Spark修炼之道(高级篇)——Spark源码阅读:第七节 resourceOffers方法与launchTasks方法解析

本文深入探讨Spark高级篇,重点解析TaskSchedulerImpl的resourceOffers方法和CoarseGrainedSchedulerBackend的launchTasks方法。这两个方法在Executor任务提交中起关键作用,通过resourceOffers分配资源,然后由launchTasks在Worker节点上启动并运行任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在上一节中,我们提到Task提交通过makeOffers提交到Executor上

    // Make fake resource offers on just one executor
    private def makeOffers(executorId: String) {
      // Filter out executors under killing
      if (!executorsPendingToRemove.contains(executorId)) {
        val executorData = executorDataMap(executorId)
        val workOffers = Seq(
          new WorkerOffer(executorId, executorData.executorHost, executorData.freeCores))
        launchTasks(scheduler.resourceOffers(workOffers))
      }
    }

上面的代码依赖于两个重要方法,它们分别是TaskSchedulerImpl resourceOffers方法及CoarseGrainedSchedulerBackend的launchTasks方法

//TaskSchedulerImpl resourceOffers方法
 /**
   * Called by cluster manager to offer resources on slaves. We respond by asking our active task
   * sets for tasks in order of priority. We fill each node with tasks in a round-robin manner so
   * that tasks are balanced across the cluster.
   */
  def resourceOffers(offers: Seq[Work
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值