Spark性能调优-Shuffle相关参数配置

Shuffle 相关

Shuffle操作大概是对Spark性能影响最大的步骤之一(因为可能涉及到排序,磁盘IO,网络IO等众多CPU或IO密集的操作),这也是为什么在Spark 1.1的代码中对整个Shuffle框架代码进行了重构,将Shuffle相关读写操作抽象封装到Pluggable的Shuffle Manager中,便于试验和实现不同的Shuffle功能模块。例如为了解决Hash Based的Shuffle Manager在文件读写效率方面的问题而实现的Sort Base的Shuffle Manager。

spark.shuffle.manager

用来配置所使用的Shuffle Manager,目前可选的Shuffle Manager包括默认的org.apache.spark.shuffle.sort.HashShuffleManager(配置参数值为hash)和新的org.apache.spark.shuffle.sort.SortShuffleManager(配置参数值为sort)。

这两个ShuffleManager如何选择呢,首先需要了解他们在实现方式上的区别。

HashShuffleManager,故名思义也就是在Shuffle的过程中写数据时不做排序操作,只是将数据根据Hash的结果,将各个Reduce分区的数据写到各自的磁盘文件中。带来的问题就是如果Reduce分区的数量比较大的话,将会产生大量的磁盘文件。如果文件数量特别巨大,对文件读写的性能会带来比较大的影响,此外由于同时打开的文件句柄数量众多,序列化,以及压缩等操作需要分配的临时内存空间也可能会迅速膨胀到无法接受的地步,对内存的使用和GC带来很大的压力,在Executor内存比较小的情况下尤为突出,例如Spark on Yarn模式。

SortShuffleManager,是1.1版本之后实现的一个试验性(也就是一些功能和接口还在开发演变中)的ShuffleManager,它在写入分区数据的时候,首先会根据实际情况对数据采用不同的方式进行排序操作,底线是至少按照Reduce分区Partition进行排序,这样来至于同一个Map任务Shuffle到不同的Reduce分区中去的所有数据都可以写入到同一个外部磁盘文件中去,用简单的Offset标志不同Reduce分区的数据在这个文件中的偏移量。这样一个Map任务就只需要生成一个shuffle文件,从而避免了上述HashShuffleManager可能遇到的文件数量巨大的问题

两者的性能比较,取决于内存,排序,文件操作等因素的综合影响。

对于不需要进行排序的Shuffle操作来说,如repartition等,如果文件数量不是特别巨大,HashShuffleManager面临的内存问题不大,而SortShuffleManager需要额外的根据Partition进行排序,显然HashShuffleManager的效率会更高。

而对于本来就需要在Map端进行排序的Shuffle操作来说,如ReduceByKey等,使用HashShuffleManager虽然在写数据时不排序,但在其它的步骤中仍然需要排序,而SortShuffleManager则可以将写数据和排序两个工作合并在一起执行,因此即使不考虑HashShuffleManager的内存使用问题,SortShuffleManager依旧可能更快。

spark.shuffle.sort.bypassMergeThreshold

这个参数仅适用于SortShuffleManager,如前所述,SortShuffleManager在处理不需要排序的Shuffle操作时,由于排序带来性能的下降。这个参数决定了在这种情况下,当Reduce分区的数量小于多少的时候,在SortShuffleManager内部不使用Merge Sort的方式处理数据,而是与Hash Shuffle类似,直接将分区文件写入单独的文件,不同的是,在最后一步还是会将这些文件合并成一个单独的文件。这样通过去除Sort步骤来加快处理速度,代价是需要并发打开多个文件,所以内存消耗量增加,本质上是相对HashShuffleMananger一个折衷方案。 这个参数的默认值是200个分区,如果内存GC问题严重,可以降低这个值。

spark.shuffle.consolidateFiles

这个配置参数仅适用于HashShuffleMananger的实现,同样是为了解决生成过多文件的问题,采用的方式是在不同批次运行的Map任务之间重用Shuffle输出文件,也就是说合并的是不同批次的Map任务的输出数据,但是每个Map任务所需要的文件还是取决于Reduce分区的数量,因此,它并不减少同时打开的输出文件的数量,因此对内存使用量的减少并没有帮助。只是HashShuffleManager里的一个折中的解决方案。

需要注意的是,这部分的代码实现尽管原理上说很简单,但是涉及到底层具体的文件系统的实现和限制等因素,例如在并发访问等方面,需要处理的细节很多,因此一直存在着这样那样的bug或者问题,导致在例如EXT3上使用时,特定情况下性能反而可能下降,因此从Spark 0.8的代码开始,一直到Spark 1.1的代码为止也还没有被标志为Stable,不是默认采用的方式。此外因为并不减少同时打开的输出文件的数量,因此对性能具体能带来多大的改善也取决于具体的文件数量的情况。所以即使你面临着Shuffle文件数量巨大的问题,这个配置参数是否使用,在什么版本中可以使用,也最好还是实际测试以后再决定。

spark.shuffle.spill

shuffle的过程中,如果涉及到排序,聚合等操作,势必会需要在内存中维护一些数据结构,进而占用额外的内存。如果内存不够用怎么办,那只有两条路可以走,一就是out of memory 出错了,二就是将部分数据临时写到外部存储设备中去,最后再合并到最终的Shuffle输出文件中去。

这里spark.shuffle.spill 决定是否Spill到外部存储设备(默认打开),如果你的内存足够使用,或者数据集足够小,当然也就不需要Spill,毕竟Spill带来了额外的磁盘操作。

spark.shuffle.memoryFraction / spark.shuffle.safetyFraction

在启用Spill的情况下,spark.shuffle.memoryFraction(1.1后默认为0.2)决定了当Shuffle过程中使用的内存达到总内存多少比例的时候开始Spill。

通过spark.shuffle.memoryFraction可以调整Spill的触发条件,即Shuffle占用内存的大小,进而调整Spill的频率和GC的行为。总的来说,如果Spill太过频繁,可以适当增加spark.shuffle.memoryFraction的大小,增加用于Shuffle的内存,减少Spill的次数。当然这样一来为了避免内存溢出,对应的可能需要减少RDD cache占用的内存,即减小spark.storage.memoryFraction的值,这样RDD cache的容量减少,有可能带来性能影响,因此需要综合考虑。

由于Shuffle数据的大小是估算出来的,一来为了降低开销,并不是每增加一个数据项都完整的估算一次,二来估算也会有误差,所以实际暂用的内存可能比估算值要大,这里spark.shuffle.safetyFraction(默认为0.8)用来作为一个保险系数,降低实际Shuffle使用的内存阀值,增加一定的缓冲,降低实际内存占用超过用户配置值的概率。

spark.shuffle.spill.compress / spark.shuffle.compress

这两个配置参数都是用来设置Shuffle过程中是否使用压缩算法对Shuffle数据进行压缩,前者针对Spill的中间数据,后者针对最终的shuffle输出文件,默认都是True

理论上说,spark.shuffle.compress设置为True通常都是合理的,因为如果使用千兆以下的网卡,网络带宽往往最容易成为瓶颈。此外,目前的Spark任务调度实现中,以Shuffle划分Stage,下一个Stage的任务是要等待上一个Stage的任务全部完成以后才能开始执行,所以shuffle数据的传输和CPU计算任务之间通常不会重叠,这样Shuffle数据传输量的大小和所需的时间就直接影响到了整个任务的完成速度。但是压缩也是要消耗大量的CPU资源的,所以打开压缩选项会增加Map任务的执行时间,因此如果在CPU负载的影响远大于磁盘和网络带宽的影响的场合下,也可能将spark.shuffle.compress 设置为False才是最佳的方案

对于spark.shuffle.spill.compress而言,情况类似,但是spill数据不会被发送到网络中,仅仅是临时写入本地磁盘,而且在一个任务中同时需要执行压缩和解压缩两个步骤,所以对CPU负载的影响会更大一些,而磁盘带宽(如果标配12HDD的话)可能往往不会成为Spark应用的主要问题,所以这个参数相对而言,或许更有机会需要设置为False。

总之,Shuffle过程中数据是否应该压缩,取决于CPU/DISK/NETWORK的实际能力和负载,应该综合考虑。

 

原文链接:https://mp.weixin.qq.com/s?__biz=MzI4MzY5MDU5Mg==&mid=2247483841&idx=1&sn=9db8162f5993b6d3a0b7658d747fedc3&chksm=eb8792cedcf01bd8d33268388c884749dd6e908af1bc279dfd9a9020106130e49e49298f36da&scene=21#wechat_redirect

### 回答1: 非常感谢您的提问。以下是关于Spark性能系列的回答: Spark性能是一个非常重要的话题,它可以帮助我们更好地利用Spark势,提高我们的数据处理效率。在Spark中,参数配置是非常重要的一环,因为它可以直接影响到Spark性能表现。在官网上,我们可以找到一份完整的Spark参数配置大全,它包含了所有的Spark参数配置项,以及每个参数的详细说明和建议配置值。这份资料可以帮助我们更好地理解Spark参数配置,以及如何根据我们的需求来进行参数。 在使用Spark时,我们应该根据自己的数据量、集群规模、任务类型等因素来进行参数配置。例如,对于内存使用方面,我们可以通过spark.driver.memory和spark.executor.memory参数来控制内存的使用量;对于任务并行度方面,我们可以通过spark.default.parallelism和spark.sql.shuffle.partitions参数来控制任务的并行度;对于数据读取方面,我们可以通过spark.sql.files.maxPartitionBytes和spark.sql.files.openCostInBytes参数来化数据读取性能等等。 总之,Spark参数配置是一个非常重要的话题,我们应该根据自己的需求来进行参数,以达到最佳的性能表现。希望以上回答能够对您有所帮助。 ### 回答2: Spark是一款强大的分布式计算框架,它具有高效的计算速度和可扩展性,能够处理规模庞大的数据集。然而,为了获得更好的性能,我们需要对Spark进行参数。本文将介绍Spark参数配置大全,旨在帮助大家更好地Spark。 1. Spark Executor参数 1.1 spark.executor.memory: Executor进程的内存大小,该参数会影响到该计算节点可以处理的数据量,一般设置为节点内存的75%左右。 1.2 spark.executor.cores: Executor进程的CPU核心数,该参数会影响到该计算节点可以处理的任务数量,一般设置为CPU核心数的1-4倍。 1.3 spark.executor.instances: 运行的Executor进程实例数量,一般设置为总CPU核心数的4-8倍。 1.4 spark.locality.wait: Executor为了处理数据先从哪个位置获取数据,可以设置为PROCESS_LOCAL、NODE_LOCAL、RACK_LOCAL等。 2. Spark Driver参数 2.1 spark.driver.memory: Driver进程的内存大小,该参数决定了整个Spark应用程序可以处理的数据量,一般设置为节点内存的50%左右。 2.2 spark.driver.cores: Driver进程的CPU核心数,该参数决定了驱动程序可以并行处理的任务数。 2.3 spark.driver.maxResultSize: 驱动程序可以接受的结果集大小限制,如果超出限制则会出现oom的问题。 3. Spark Shuffle参数 3.1 spark.shuffle.spill.compress: Shuffle写入磁盘之前是否压缩。 3.2 spark.shuffle.file.buffer: Shuffle写入磁盘之前的Buffer大小,一般为32MB。 3.3 spark.shuffle.io.maxRetries: Shuffle读取磁盘数据时最大重试次数。 3.4 spark.shuffle.sort.bypassMergeThreshold: 内存中的排序文件大小达到多少时跳过合并。 4. Spark Memory参数 4.1 spark.memory.fraction: Executor进程中使用的内存比例。 4.2 spark.memory.storageFraction: 持久化RDD使用的内存比例。 4.3 spark.memory.offHeap.enabled: 是否启用OffHeap内存,OffHeap内存分配和释放速度更快,但不能直接被JVM管理。 4.4 spark.storage.memoryFraction: RDD数据存储在内存中的占比。 5. Spark Task参数 5.1 spark.task.maxFailures: Task最大失败次数。 5.2 spark.task.cpus: Task使用的CPU核心数。 5.3 spark.task.resource.gpu.amount:使用GPU的时候设置。 本文仅列举了Spark的一些常见配置参数,更多参数可以在官网上查看。通过不断的化,可以有效地提高Spark性能和计算效率,让我们的计算任务更加高效。 ### 回答3: Spark是目前流行的分布式计算框架之一,作为一个分布式计算框架,其性能是非常重要的。针对这一点,Spark提供了大量的参数来进行配置,我们可以根据应用场景进行,以达到最佳的性能表现。 1. 堆内存设置:我们可以通过设置spark.driver.memory和spark.executor.memory来控制任务在执行过程中所需要的内存,比如设置为1G或2G,都是比较合适的。 2. 并发度整:我们可以通过设置spark.default.parallelism和spark.sql.shuffle.partitions来修改默认的并发度,提高任务的并行性能。 3. 序列化设置:Spark支持Java序列化和Kyro序列化,如果数据量较大,推荐使用Kyro,而在数据量比较小的情况下,Java序列化的速度可能会更快。 4. 垃圾回收机制:Spark采用的是JVM垃圾回收机制,默认情况下是使用并行垃圾回收器,可以通过修改spark.executor.extraJavaOptions来整垃圾回收器的参数。 5. 数据压缩设置:在数据传输过程中,我们可以将数据压缩以减小数据传输的大小,这可以通过设置spark.io.compression.codec来完成。 6. 内存管理策略:Spark提供了两种内存管理策略,即静态内存管理和动态内存管理,可通过设置spark.memory.useLegacyMode和spark.memory.fraction来选择合适的策略。 7. 代码化:为了提高Spark性能,我们可以通过代码化来减少读写IO和数据扫描的次数,使用Broadcast变量等来减少数据传输的次数,从而提高性能。 总之,在对Spark进行性能时,需要根据具体的应用场景进行常规的参数设置以及代码化,以达到最性能表现,从而更好地支持大数据分析和处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值