Python特殊语法:filter、map、reduce、lambda

 

Python内置了一些非常有趣但非常有用的函数,充分体现了Python的语言魅力!


filter(function, sequence)对sequence中的item依次执行function(item),将执行结果为True的item组成一个List/String/Tuple(取决于sequence的类型)返回:


>>> def f(x): return x % 2 !=0 and x % 3!=0
... 
>>> filter(f,range(2,25))
[5, 7, 11, 13, 17, 19, 23]
>>> def f(x):return x != 'a'
... 
>>> filter(f,"abcdef")
'bcdef'
>>> 


map(function, sequence)对sequence中的item依次执行function(item),见执行结果组成一个List返回:


>>> def cube(x):return x*x*x
... 
>>> map(cube,range(1,11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
>>> def cube(x):return x+x
... 
>>> map(cube,"abcde")
['aa', 'bb', 'cc', 'dd', 'ee']
>>> 

另外map也支持多个sequence,这就要求function也支持相应数量的参数输入:


>>> def add(x,y):return x+y
... 
>>> map(add,range(8),range(8))
[0, 2, 4, 6, 8, 10, 12, 14]
>>> 

reduce(function, sequence, starting_value)对sequence中的item顺序迭代调用function,如果有starting_value,还可以作为初始值调用,例如可以用来对List求和:


>>> def add(x,y): return x + y 
>>> reduce(add, range(1, 11)) 
55 (注:1+2+3+4+5+6+7+8+9+10)
>>> reduce(add, range(1, 11), 20) 
75 (注:1+2+3+4+5+6+7+8+9+10+20)

lambda这是Python支持一种有趣的语法,它允许你快速定义单行的最小函数,类似与C语言中的宏,这些叫做lambda的函数,是从LISP借用来的,可以用在任何需要函数的地方:

>>> g = lambda x: x * 2 
>>> g(3) 
6 
>>> (lambda x: x * 2)(3) 
6

我们也可以filter map reduce 和lambda结合起来用,函数就可以简单的写成一行。
例如

kmpathes = filter(lambda kmpath: kmpath,                  
map(lambda kmpath: string.strip(kmpath),
string.split(l, ':')))  
        
看起来麻烦,其实就像用语言来描述问题一样,非常优雅。
对 l 中的所有元素以':'做分割,得出一个列表。对这个列表的每一个元素做字符串strip,形成一个列表。对这个列表的每一个元素做直接返回操作(这个地方可以加上过滤条件限制),最终获得一个字符串被':'分割的列表,列表中的每一个字符串都做了strip,并可以对特殊字符串过滤。



内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值