Effective C++ 2e Item41

博客以设计堆栈类和猫类为例,探讨C++中继承和模板的应用。当对象类型不影响类中函数行为,如堆栈类,适合用模板;当对象类型影响类中函数行为,如猫类,适合用继承。还给出了Stack类和Cat类的代码示例,并总结了选择依据。

条款41: 区分继承和模板

考虑下面两个设计问题:

· 作为一位立志献身计算机科学的学生,你想设计一个类来表示对象的堆栈。这将需要多个不同的类,因为每个堆栈中的元素必须是同类的,即,它里面包含的必须只是同种类型的对象。例如,会有一个类来表示int的堆栈,第二个类来表示string的堆栈,第三个类来表示string的堆栈的堆栈,等等。你也许对设计一个最小的类接口(参见条款18)很感兴趣,所以会将对堆栈的操作限制在:创建堆栈,销毁堆栈,将对象压入堆栈,将对象弹出堆栈,以及检查堆栈是否为空。设计中,你不会借助标准库中的类(包括stack ---- 参见条款49),因为你渴望亲手写这些代码。重用(Reuse)是一件美事,但当你的目标是探究事情的工作原理时,那就只有挖地三尺了。

· 作为一位爱猫的宠物迷,你想设计一个类来表示猫。这也将需要多个不同的类,因为每个品种的猫都会有点不同。和所有对象一样,猫可以被创建和销毁,但,正如所有猫迷所知道的,猫所做的其它事不外乎吃和睡。然而,每一种猫吃和睡都有各自惹人喜爱的方式。

这两个问题的说明听起来很相似,但却导致完全不同的两种设计。为什么?

答案涉及到"类的行为" 和 "类所操作的对象的类型"之间的关系。对于堆栈和猫来说,要处理的都是各种不同的类型(堆栈包含类型为T的对象,猫则为品种T),但你必须问自己这样一个问题:类型T影响类的行为吗?如果T不影响行为,你可以使用模板。如果T影响行为,你就需要虚函数,从而要使用继承。

下面的代码通过定义一个链表来实现Stack类,假设堆栈的对象类型为T:

class Stack {
public:
  Stack();
  ~Stack();

  void push(const T& object);
  T pop();

  bool empty() const;             // 堆栈为空?

private:
  struct StackNode {              // 链表节点
    T data;                       // 此节点数据
    StackNode *next;              // 链表中下一节点

    // StackNode构造函数,初始化两个域
    StackNode(const T& newData, StackNode *nextNode)
    : data(newData), next(nextNode) {}
  };

  StackNode *top;                 // 堆栈顶部

  Stack(const Stack& rhs);               // 防止拷贝和
  Stack& operator=(const Stack& rhs);    // 赋值(见条款27)
};

于是,Stack对象将构造如下所示的数据结构:

Stack对象 top--> data+next--> data+next--> data+next--> data+next
                        ------------------------------------------------------------------------------------
                                                 StackNode对象

链表本身是由StackNode对象构成的,但那只是Stack类的一个实现细节,所以StackNode被声明为Stack的私有类型。注意StackNode有一个构造函数,用来确保它所有的域都被正确初始化。即使你闭着眼睛都可以写出一个链表,但也不要忽视了C++的一些新特性,如struct中的构造函数。

下面看看你对Stack成员函数的实现。和许多原型(prototype)的实现(离制作成软件产品相差太远)一样,这里没有错误检查,因为在原型世界里,没有东西会出错。

Stack::Stack(): top(0) {}      // 顶部初始化为null

void Stack::push(const T& object)
{
  top = new StackNode(object, top);    // 新节点放在
}                                      // 链表头部

T Stack::pop()
{
  StackNode *topOfStack = top;    // 记住头节点
  top = top->next;

  T data = topOfStack->data;      // 记住节点数据
  delete topOfStack;

  return data;
}

Stack::~Stack()                   // 删除堆栈中所有对象
{
  while (top) {
    StackNode *toDie = top;       // 得到头节点指针
    top = top->next;              // 移向下一节点
    delete toDie;                 // 删除前面的头节点
  }
}

bool Stack::empty() const
{ return top == 0; }

这些代码毫无吸引人之处。实际上,唯一有趣的一点在于:即使对T一无所知,你还是能够写出每个成员函数。(上面的代码中实际上有个假设,即,假设可以调用T的拷贝构造函数;但正如条款45所说明的,这是一个绝对合理的假设)不管T是什么,对构造,销毁,压栈,出栈,确定栈是否为空等操作所写的代码不会变。除了 "可以调用T的拷贝构造函数" 这一假设外,stack的行为在任何地方都不依赖于T。这就是模板类的特点:行为不依赖于类型。

将stack类转化成一个模板就很简单了,即使是Dilbert的老板都会写:

template<class T> class Stack {

  ...                          // 完全和上面相同

};

但是,猫呢?为什么猫不适合模板?

重读上面的说明,注意这一条:"每一种猫吃和睡都有各自惹人喜爱的方式"。这意味着必须为每种不同的猫实现不同的行为。不可能写一个函数来处理所有的猫,所能做的只能是制定一个函数接口,所有种类的猫都必须实现它。啊哈!衍生一个函数接口的方法只能是去声明一个纯虚函数(参见条款36):

class Cat {
public:
  virtual ~Cat();                     // 参见条款14

  virtual void eat() = 0;             // 所有的猫吃食
  virtual void sleep() = 0;           // 所有的猫睡觉
};

Cat的子类 ---- 比如,Siamese和BritishShortHairedTabby ---- 当然得重新定义继承而来的eat和sleep函数接口:

class Siamese: public Cat {
public:
  void eat();
  void sleep();

  ...

};

class BritishShortHairedTabby: public Cat {
public:
  void eat();
  void sleep();

  ...

};

好了,现在知道了为什么模板适合Stack类而不适合Cat类,也知道了为什么继承适合Cat类。唯一剩下的问题是,为什么继承不适合Stack类。想知道为什么,不妨试着去声明一个Stack层次结构的根类 ---- 所有其它的堆栈类都从这个唯一的类继承:

class Stack {      // a stack of anything
public:
  virtual void push(const ??? object) = 0;
  virtual ??? pop() = 0;

  ...

};

现在问题很明显了。该为纯虚函数push和pop声明什么类型呢?记住,每一个子类必须重新声明继承而来的虚函数,而且参数类型和返回类型都要和基类的声明完全相同。不幸的是,一个int堆栈只能压入和弹出int对象,而一个Cat堆栈只能压入和弹出Cat对象。Stack类要怎样声明它的纯虚函数才能使用户既可以创建出int堆栈又可以创建出Cat堆栈呢?冷酷而严峻的事实是,做不到。这就是为什么说继承不适合创建堆栈。

但也许你做事喜欢偷偷摸摸。或许你认为自己可以通过使用通用(void*)指针来骗过编译器。但事实证明,现在这种情况下,通用指针也帮不上忙。因为你无法避开这一条件:派生类虚函数的声明永远不能和它在基类中的声明相抵触。但是,通用指针可以帮助解决另外一个不同的问题,它和模板所生成的类的效率有关。详细介绍参见条款42。

讲完了堆栈和猫,下面将本条款得到的结论总结如下:

· 当对象的类型不影响类中函数的行为时,就要使用模板来生成这样一组类。
· 当对象的类型影响类中函数的行为时,就要使用继承来得到这样一组类。

真正消化了以上两点的含义,你就可以在设计中游刃于继承或模板之间。

<think> 我们参考了用户提供的引用内容,其中提到了内存管理、多线程编程和STL等内容。用户已经学完C++基础语法、STL和多线程,接下来应该学习什么? 根据C++的学习路径,在掌握了这些基础之后,可以继续深入学习以下方向: 1. 深入模板元编程:C++的模板是强大且复杂的特性,学习模板元编程可以提高代码的抽象能力和复用性。 2. 现代C++特性(C++11/14/17/20):学习lambda表达式、智能指针、移动语义、并发库等现代特性。 3. 设计模式:掌握常用的设计模式,提高软件设计能力。 4. 网络编程:学习使用C++进行网络编程,如socket编程,以及网络库(如Boost.Asio)的使用。 5. 系统级编程:包括操作系统相关的API调用、进程管理、文件系统操作等。 6. 性能优化:学习如何分析和优化C++程序的性能,包括内存访问模式、缓存友好设计等。 7. 跨平台开发:了解如何在不同的操作系统(如Windows、Linux)上开发和移植C++程序。 8. 深入学习并发编程:虽然已经学习了多线程,但并发编程还有更多高级主题,如无锁编程、线程池、条件变量等。 我们根据这些方向,为用户推荐接下来的学习内容,并生成相关问题。 </think>在学完C++基础语法、STL和多线程后,建议按照以下路径继续深入学习,这些内容能帮助你构建更专业的C++开发能力: ### 1. 现代C++特性(C++11/14/17/20) ```cpp // 示例:现代C++核心特性 auto lambda = [](auto x) { // C++14泛型lambda return std::make_unique<int>(x*2); // 智能指针 }; std::vector<int> v{1,2,3}; // 初始化列表 for(auto&& item : v) { // 范围for循环 std::cout << item << std::endl; } ``` - **关键特性**:智能指针(`unique_ptr/shared_ptr`)、移动语义、lambda表达式、类型推导(`auto`)、并发库(`<future>`) - **学习资源**:《Effective Modern C++》(Scott Meyers)、cppreference.com ### 2. 内存管理进阶 ```cpp // 智能指针应用场景 class Resource { public: Resource() { std::cout << "资源创建\n"; } ~Resource() { std::cout << "资源释放\n"; } }; auto processResource() { auto res = std::make_shared<Resource>(); // 自动内存管理 return res; // 引用计数管理生命周期 } ``` - **重点内容**: - 智能指针的原理与使用场景 - 自定义内存分配器 - 内存泄漏检测工具(Valgrind、AddressSanitizer) - RAII(资源获取即初始化)设计模式 ### 3. 网络编程(结合多线程) ```cpp // 简易TCP服务器示例 void start_server() { boost::asio::io_context io; tcp::acceptor acceptor(io, tcp::endpoint(tcp::v4(), 8080)); auto handle_connection = [&] { tcp::socket socket(io); acceptor.accept(socket); std::thread(handle_client, std::move(socket)).detach(); }; } ``` - **推荐方向**: - Socket编程基础 - 网络库:Boost.Asio/Poco/libevent - HTTP/TCP协议实现 - 高并发服务器架构 ### 4. 设计模式与架构 ```cpp // 工厂模式示例 class Widget { public: virtual void draw() = 0; static std::unique_ptr<Widget> create(WidgetType type); // 工厂方法 }; ``` - **常用模式**: - 创建型:工厂/单例/建造者 - 结构型:适配器/代理/组合 - 行为型:观察者/策略/命令 - **学习建议**:《设计模式:可复用面向对象软件的基础》 ### 5. 跨平台开发 - **关键技术**: - CMake构建系统 - 平台特定API封装(Windows/Linux/macOS) - 条件编译与宏定义 - 跨平台GUI框架(Qt/WxWidgets) ### 6. 性能优化 ```cpp // 缓存友好设计示例 struct alignas(64) CacheLine { // 64字节对齐 int data[16]; }; ``` - **优化方向**: - CPU缓存机制 - 分支预测优化 - SIMD指令集(AVX/SSE) - 性能分析工具(perf、VTune) ### 7. 项目实践建议 ```mermaid graph LR A[基础语法] --> B[STL容器] B --> C[多线程] C --> D[网络编程] D --> E[设计模式] E --> F[性能优化] F --> G[完整项目] ``` - **项目类型**: - 简易数据库系统 - HTTP服务器 - 实时数据处理系统 - 游戏引擎模块
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值