How does SQL Plan Management match SQL statements to SQL plan baselines?

https://blogs.oracle.com/optimizer/entry/how_does_sql_plan_management

 

 

How does SQL Plan Management match SQL statements to SQL plan baselines?

Happy New Year to all of our readers!

As more and more of your systems migrate to Oracle Database 11g, SQL Plan Management (SPM) is becoming increasingly popular as a mechanism to maintain plan stability and subsequently system performance. However, one of the key frustrations folks encounter when using SPM is that the SQL plan baseline they painstakingly created is not used. So, how does Oracle decide whether or not to use an existing SQL plan baseline?

SQL statements are matched to SQL plan baselines using the signature of the SQL statement. A signature is a unique SQL identifier generated from the normalized SQL text (uncased and with whitespaces removed). This is the same technique used by SQL profiles and SQL patches. This means, if you issue identical SQL statements from two different schemas they would resolve to the same SQL plan baseline. Now, you might be thinking that this approach could lead to all sorts of performance problems because you may not want the same plan used by each schema. But remember a SQL plan baseline can have multiple plans for the same SQL statement and SPM records the parsing schema along with each plan.

Let’s take a look at this in action to fully understand why it is not a problem using the following SQL text,

Select count(s.quantity_sold) total_sales
From Sales s
Where s.prod_id=30;

We begin in the SH sample schema and execute the statement to see the cost-based plan.

Let’s create a SQL plan baseline for this SQL statement. We can do this by capturing the plan directly from the cursor cache into a SQL plan baseline, using the DBMS_SPM package. But first we need the SQL_ID for our statement, which we can get from V$SQL.

We can confirm our SQL plan baseline exists and our preferred plan is both enabled and accepted by querying DBA_SQL_PLAN_BASELINES.

By re-executing the query we can see that the SQL plan baseline is now being used even when we change the case and white spaces in our statement.

Let’s now connect as the sample schema SCOTT. We have created an identical copy of the sales table in the SCOTT schema but it does not have the IND_SALES_PROD_QTY_SOLD index. If we execute the identical SQL statement from the SCOTT schema should it use the existing SQL plan baseline or not?

Well, we didn’t get the same plan or a note to say the SQL plan baseline was used. The plan used in this case was a fast full scan of the bitmap index SALES_PROD_BIX. So does this mean the SQL statement wasn’t matched to our existing SQL plan baseline?

No, the SQL statement was in fact matched to the existing SQL plan baseline but the accepted plan in the SQL plan baseline couldn’t be reproduced in the SCOTT schema.

Here is exactly what happened. When the statement was issued in the SCOTT schema Oracle determined the best cost-based plan for the SQL statement to be a fast full index scan on the SALES_PROD_BIX index. Before executing this plan we checked to see if the SQL statement matched an existing SQL plan baseline using its SQL signature. We found a corresponding SQL plan baseline, so we checked to see if the cost-based plan we came up with matches an accepted plan in the SQL plan baseline. It does not, so our cost-based plan got added to the SQL plan baseline as a non-accepted plan and we tried to use the existing accepted plan. However, the existing plan requires a b-tree index on the prod_id and quantity_sold, which doesn’t exist in the SCOTT schema. Since we can’t reproduce the accepted plan, we use the cost-based plan that the Optimizer came up with at parse. If we check the SQL plan baseline we will see that this new plan using the SALES_PROD_BIX index has been added to the SQL plan baseline but it is not accepted.


If the new plan is accepted using DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE procedure, we will see that it is used by the identical SQL statement in the SCOTT schema.

Now, that the new plan is accepted let try running the SQL statement again from the SCOTT schema.

So, as you can see the same SQL plan baseline is being used for an identical SQL statement issued from two different schemas. This is not a problem since a SQL plan baseline can have multiple accepted execution plans. You just need to manage the plans in the SQL plan baseline to ensure your preferred plan for each schema is an accepted plan.

You can get a copy of the script I used to generate this post here.

 

基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值