[DP] POJ - 3624 Charm Bracelet

本文介绍了一个经典的01背包问题,给出了完整的代码实现,并详细解释了如何在给定的重量限制下选择一系列具有不同权重和价值的物品,以达到最大的总价值。此问题常见于计算机科学中的动态规划领域。

Charm Bracelet
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 41212 Accepted: 17929

Description

Bessie has gone to the mall’s jewelry store and spies a charm bracelet. Of course, she’d like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a ‘desirability’ factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

Input

  • Line 1: Two space-separated integers: N and M
  • Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di

Output

  • Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

Sample Input

4 6
1 4
2 6
3 12
2 7
Sample Output

23

题意: 01背包问题,
输入的第一行有两个数,第一个是代表有n件物品,第二个表示背包的重量限制。接下来有n行数据,每行数据包含两个数字。第一个表示这件物品的重量,第二个数字表示这件物品的价值。
我们要做的是求出在重量限制下,背包最多能装多少价值的物品。每件物品只有一件。

//已AC代码
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <complex>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <cassert>
using namespace std;
#define N 1050017
int main()
{
    int dp[30000];
    int n,m;
    int w[4000];
    int d[4000];
    int i, j;
    while (scanf("%d%d",&n,&m)!=EOF)
    {
        for (i=1;i<=n;i++)
            cin>>w[i]>>d[i];
        memset(dp,0,sizeof(dp));
        for (i=1;i<=n;i++)
        {
            for (j=m;j>=w[i];j--)
            {
                dp[j]=max(dp[j],dp[j-w[i]]+d[i]);
            }
        }
        cout<<dp[m]<<endl;
    }
}
基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不依赖物理位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估计与控制。文中结合嵌入式开发平台STM32 F4,采用如滑模观测器、扩展卡尔曼滤波或高频注入法等先进观测技术,实现对电机反电动势或磁链的估算,进而完成无传感器矢量控制(FOC)。同时,研究涵盖系统建模、控制算法设计、仿真验证(可能使用Simulink)以及在STM32硬件平台上的代码实现与调试,旨在提高电机控制系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电力电子、自动控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师。; 使用场景及目标:①掌握永磁同步电机无位置传感器控制的核心原理与实现方法;②学习如何在STM32平台上进行电机控制算法的移植与优化;③为开发高性能、低成本的电机驱动系统提供技术参考与实践指导。; 阅读建议:建议读者结合文中提到的控制理论、仿真模型与实际代码实现进行系统学习,有条件者应在实验平台上进行验证,重点关注观测器设计、参数整定及系统稳定性分析等关键环节。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值