前言
随着Transformer爆火以来,NLP领域迎来了大模型时代,成为AI目前最先进和火爆的领域,介于Transformer的先进性,基于Transformer架构的CV模型也开始涌现。本文介绍一下最先得到可靠应用的简单模型:ViT(Vision Transformer)、DETR(Detection Transformer)。
一、ViT
应用和结论
ViT是2020年Google团队提出的将Transformer应用在图像分类的模型,但是因为其模型“简单”且效果好,可扩展性强(scalable,模型越大效果越好),成为了Transformer在CV领域通用的backbone。
ViT原论文中最核心的结论是,当拥有足够多的数据进行预训练的时候,ViT的表现就会超过CNN,突破transformer缺少归纳偏置的限制,可以在下游任务中获得较好的迁移效果。但是当训练数据集不够大的时候,ViT的表现通常比同等大小的ResNets要差一些,这是因为Transformer和CNN相比缺少归纳偏置(inductive bias),即一种先验知识,提前做好的假设。
CNN具有两种归纳偏置:一种是局部性,即图片上相邻的区域具有相似的特征;一种是平移不变形,先卷积还是先平移结果都是一样
结构及创新点
ViT的结构: