Perfect Squares

Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, …) which sum to n.

For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.

Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.

思路:其实这道题和青蛙跳台阶的那一道也有点相似。用f(i)表示当n为i的时候,最少的完全平方数的个数。f(i)就等于f(i-1)+f(1) 、f(i-4)+f(4)、f(i-9)+f(9)、、、f(i-k)+f(k),(其中k要小于i) 中最小的一个加上1。其中f(1)、f(4)和f(9)等均为1。那么就反过来求,求f(1)、f(2)、、、,f(n)自然也会有结果了。

public class Solution {
    public int numSquares(int n) {
        if(n<=0) return -1;     
        int[] nums=new int[n+1];

        int c=1;
        while(c*c<=n)
        {
            nums[c*c]=1;
            c++;      
        }

        for(int i=1;i<=n;i++)
        {
            if(nums[i]==1) continue;
            int min=Integer.MAX_VALUE;
            int j=1;
            while(j*j<i)
            {
   min=min < (nums[i-j*j]+1) ? min : nums[i-j*j]+1;
                j++;
            }
            nums[i]=min;

        }
        return nums[n];

    }
}
内容概要:本文档详细介绍了基于MATLAB实现多目标差分进化(MODE)算法进行无人机三维路径规划的项目实例。项目旨在提升无人机在复杂三维环境中路径规划的精度、实时性、多目标协调处理能力、障碍物避让能力和路径平滑性。通过引入多目标差分进化算法,项目解决了传统路径规划算法在动态环境和多目标优化中的不足,实现了路径长度、飞行安全距离、能耗等多个目标的协调优化。文档涵盖了环境建模、路径编码、多目标优化策略、障碍物检测与避让、路径平滑处理等关键技术模块,并提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,对无人机路径规划和多目标优化算法感兴趣的科研人员、工程师和研究生。 使用场景及目标:①适用于无人机在军事侦察、环境监测、灾害救援、物流运输、城市管理等领域的三维路径规划;②通过多目标差分进化算法,优化路径长度、飞行安全距离、能耗等多目标,提升无人机任务执行效率和安全性;③解决动态环境变化、实时路径调整和复杂障碍物避让等问题。 其他说明:项目采用模块化设计,便于集成不同的优化目标和动态环境因素,支持后续算法升级与功能扩展。通过系统实现和仿真实验验证,项目不仅提升了理论研究的实用价值,还为无人机智能自主飞行提供了技术基础。文档提供了详细的代码示例,有助于读者深入理解和实践该项目。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值