from : https://leetcode.com/problems/distinct-subsequences/
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is
a subsequence of "ABCDE"
while "AEC"
is
not).
Here is an example:
S = "rabbbit"
, T = "rabbit"
Return 3
.
DP,化归为二维地图的走法问题。
绿色为初始值,个别计算处有标出。
设矩阵transArray,其中元素transArray[i][j]为S[0,...,i]到T[0,...,j]有多少种转换方式。
问题就转为从左上角只能走对角(匹配)或者往下(删除字符),到右下角一共有多少种走法。
transArray[i][0]初始化为1的含义是:任何长度的S,如果转换为空串,那就只有删除全部字符这1种方式。
当S[i-1]==T[j-1],说明可以从transArray[i-1][j-1]走对角到达transArray[i][j](S[i-1]匹配T[j-1]),此外还可以从transArray[i-1][j]往下到达transArray[i][j](删除S[i-1])
当S[i-1]!=T[j-1],说明只能从transArray[i-1][j]往下到达transArray[i][j](删除S[i-1])
public class Solution {
public int numDistinct(String s, String t) {
int m = s.length(), n = t.length();
int[][] c = new int[m+1][n+1];
for(int i=0; i<=m; ++i) {
c[i][0] = 1;
}
for(int i=1; i<=m; ++i) {
for(int j=1; j<=n; ++j) {
if(s.charAt(i-1) == t.charAt(j-1)) {
c[i][j] = c[i-1][j-1] + c[i-1][j];
} else {
c[i][j] = c[i-1][j];
}
}
}
return c[m][n];
}
}