Membase Key-Concept

Membase Server 是一个完全兼容 memcached 的高性能、高可用性分布式键值数据库和缓存系统,旨在为高度交互的 Web 应用程序提供弹性数据管理服务。它具有动态扩展能力,并通过集群管理、客户端接口、智能客户端等特性,实现高效、无中断的水平扩展。Membase Server 集群由一个或多个服务器节点组成,管理员可以定义桶来提供弹性数据管理服务。Membase Server 支持横向扩展,只需添加节点并使用 Web 控制台加入集群即可。此外,Membase Server 的集群管理器提供了内置的集群管理和 REST 接口,以及内存配额、磁盘配额等功能,确保了系统的高可用性和性能。

Membase Server is a high-performance, highly-available, distributed, key-value database and caching system that is 100% compatible with memcached. It is optimized for storing the data behind highly interactive web applications and is a scale-out ("elastic") technology at its core.

  • A Membase cluster is made up of one or more servers/nodes.  Within this cluster, an administrator can define a number of buckets that are used to provide the elastic data management services.
  • There are a variety of ways to interract and administer a Membase cluster:
    • The Membase Web Console
    • The Membase Command Line Interface
    • The Membase REST API

Scaling out a Membase Server cluster horizontally is as simple as adding a Membase Server node and using the Membase Web Console to join a cluster. With Membase Server, clusters can grow dynamically without impacting the system.

Membase Server has a Cluster Manager that provides built-in cluster management and a simple REST interface. Client libraries and web applications that utilize the interface can determine the health and state of a Membase Server cluster. There is also a built-in proxy running on each server that handles the redirection of client traffic. This allows a Membase Server cluster to scale dynamically as servers are added to or removed from the cluster - while web applications continue to operate with no disruption.Smart clients coordinate directly with the cluster to achieve even better performance.

Definitions

  • A node is an instance of Membase Server installed on a single host machine. The underlying architecture is less important to this discussion, but one can equate a Membase node with a server. A server can be running inside of [EC2], VMware, on dedicated hardware, etc.
  • A cluster is a logical collection of one or more server nodes running Membase Server. Clustering is the foundation of Membase's horizontally scalable Cluster Manager. By clustering server nodes, production deployments of Membase Server have the ability to increase storage capacity and improve performance and system availability.

Membase Cluster Manager

Membase's Cluster Manager is a Membase Server component running on each server and provides the following services:

  • Clustering (划分cluster)and cluster management
  • Server node administration (startup and shutdown)
  • Server node monitoring
  • Statistics gathering and aggregation(信息汇总)
  • Run-time logging (日志)
  • Multi-tenancy(多租户?)
  • Security for administrative access and access to cache resources (安全控制)

Client applications access these services via theadmin port (8091) and data ports (11211 or 11210).  The cluster communicates internally on ports

Managing Disk and Memory for Nodes in the Cluster

Membase Server automatically manages storing the working set between disk and memory resources for nodes in a cluster. This allows an installation to have a working set that is larger than the available RAM in the nodes participating in the cluster. To keep throughput high and latency low, Membase Server will always keep metadata about all items in memory.

When configuring a Membase Server, a memory quota is set. Membase Server will automatically migrate items from memory to disk when the configured memory quota is reached.If those items are later accessed, they will be moved back into system memory. For efficiency purposes, these operations are performed on a regular basis in the background.

At the moment, there is no ability define a quota for the on-disk persistent storage.(不能决定硬盘配额,只指定存储位置)  It is up to the administrator to appropriately monitor the disk utilization and take action(只能靠第三方来维护硬盘空间) (either deleting data from Membase or adding capacity by upgrading the nodes themselves or adding more nodes)


Server Quotas

Each server node has a memory quota that defines the amount of system memory that is available to that server node on the host system. The first node in a cluster sets a memory quota that is subsequently inherited by all servers joining the cluster. The maximum memory quota set on the first server node must be less than or equal to80% of the total physical RAM on that node. A server cannot join a cluster if it has less physical RAM than 1.25x the RAM quota (the same maximum allocation of 80% of physical RAM to the cluster).

Server nodes do not have disk quotas. System administrators are responsible for monitoring free disk space on individual server nodes.(Server 应该有负载均衡和数据添加不进去的处理,这里只是说硬盘空间无法智能维护) Each server node in a cluster has its own storage path - the location on disk where data will be stored. Storage paths do not need to be uniform across all server nodes in a cluster. If a server that was a standalone cluster joins another cluster, the storage path for that server remains unchanged.

Bucket Quotas (对用户来说,他所需要的数据位于一个bucket中) (bucket是虚拟的,代表用户的一个数据集)

Memory quota allocation is identical to that of the current Membase Memcached Server product. A fixed amount of memory per node is allocated for use by a bucket. Adding or removing nodes will change the size of the bucket.

Bucket 用于数据管理服务 

Membase Data Buckets

Membase Server provides data management services using data buckets (or just buckets), which are isolated virtual containers for data.A bucket is a logical grouping of physical resourceswithin a cluster of Membase Servers.They can be used by multiple client applications across a cluster. Buckets provide a secure mechanism for organizing, managing, and analyzing data storage resources.

Membase Server provides the following types of buckets that can be created and [managed]. Membase Server collects and reports on run-time [statistics] by bucket type.

Bucket Type Description
Membase Provides highly-available and dynamically reconfigurable distributed data storage, providing persistence and replication services
Memcached Provides a distributed (scale-out), in-memory, key-value cache. Memcached buckets are designed to be used alongside relational database technology.

Capabilities of Membase-type Data Buckets

Capability Description
Persistence Data objects can be persisted asynchronously(异步,不是和内存同步) to hard-disk resources from memory to provide protection from server restarts or minor failures. Persistence properties are set at the bucket level.
Replication A configurable number of replica servers can receive copies of all data objects in the Membase-type bucket. If the host machine fails, a replica server can be promoted to be the host server, providing continuous (HA) cluster operations via fail-over. 
Rebalancing Rebalancing enables load distribution across resources and dynamic addition or removal of buckets and servers in the cluster.

--


Smart clients discover changes in the cluster using the Membase Management REST API.Buckets can be used to isolate individual applications to provide multi-tenancy, or to isolate data types in the cache to enhance performance and visibility. 

Membase Server allows you to use and mix different types of buckets (Membase and Memcached) as appropriate in your environment.Buckets of different types still share the same resource pool and cluster resources.Quotas for RAM and disk usage are configurable per bucketso that resource usage can be managed across the cluster. 


【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)》的技术资源,聚焦于电力系统中低碳经济调度问题,结合N-1安全准则与分布鲁棒机会约束(DRCC)方法,提升调度模型在不确定性环境下的鲁棒性和可行性。该资源提供了完整的Matlab代码实现,涵盖建模、优化求解及仿真分析全过程,适用于复杂电力系统调度场景的科研复现与算法验证。文中还列举了大量相关领域的研究主题与代码资源,涉及智能优化算法、机器学习、电力系统管理、路径规划等多个方向,展示了广泛的科研应用支持能力。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源调度、智能电网相关工作的工程师。; 使用场景及目标:①复现高水平期刊(如EI/SCI)关于低碳经济调度的研究成果;②深入理解N-1安全约束与分布鲁棒优化在电力调度中的建模方法;③开展含新能源接入的电力系统不确定性优化研究;④为科研项目、论文撰写或工程应用提供可运行的算法原型和技术支撑。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码与案例数据,按照目录顺序逐步学习,并重点理解DRCC建模思想与Matlab/YALMIP/CPLEX等工具的集成使用方式,同时可参考文中列出的同类研究方向拓展研究思路。
内容概要:本文详细介绍了一个基于MATLAB实现的电力负荷预测项目,采用K近邻回归(KNN)算法进行建模。项目从背景意义出发,阐述了电力负荷预测在提升系统效率、优化能源配置、支撑智能电网和智慧城市建设等方面的重要作用。针对负荷预测中影响因素多样、时序性强、数据质量差等挑战,提出了包括特征工程、滑动窗口构造、数据清洗与标准化、K值与距离度量优化在内的系统性解决方案。模型架构涵盖数据采集、预处理、KNN回归原理、参数调优、性能评估及工程部署全流程,并支持多算法集成与可视化反馈。文中还提供了MATLAB环境下完整的代码实现流程,包括数据加载、归一化、样本划分、K值选择、模型训练预测、误差分析与结果可视化等关键步骤,增强了模型的可解释性与实用性。; 适合人群:具备一定MATLAB编程基础和机器学习基础知识,从事电力系统分析、能源管理、智能电网或相关领域研究的研发人员、工程师及高校师生;适合工作1-3年希望提升实际项目开发能力的技术人员; 使用场景及目标:①应用于短期电力负荷预测,辅助电网调度与发电计划制定;②作为教学案例帮助理解KNN回归在实际工程中的应用;③为新能源接入、需求响应、智慧能源系统提供数据支持;④搭建可解释性强、易于部署的轻量级预测模型原型; 阅读建议:建议结合MATLAB代码实践操作,重点关注特征构造、参数调优与结果可视化部分,深入理解KNN在时序数据中的适应性改进方法,并可进一步拓展至集成学习或多模型融合方向进行研究与优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值