MapReduce程序运行流程详解

本文详细介绍了MapReduce的工作流程,包括任务提交、MapTask和ReduceTask的执行过程,重点解析了Shuffle机制,阐述了如何通过调整缓冲区大小提高程序执行效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、MapReduce整体运行流程

流程示意图如下:
MapReduce工作机制详解(含Shuffle机制)
(1)在MapReduce程序读取文件的输入目录上存放相应的文件。
(2)客户端程序在submit()方法执行前,获取待处理的数据信息,然后根据集群中参数的配置形成一个任务分配规划。
(3)客户端提交job.split、jar包、job.xml等文件给yarn,yarn中的resourcemanager启动MRAppMaster。
(4)MRAppMaster启动后根据本次job的描述信息,计算出需要的maptask实例数量,然后向集群申请机器启动相应数量的maptask进程。
(5)maptask利用客户指定的inputformat来读取数据,形成输入KV对。
(6)maptask将输入KV对传递给客户定义的map()方法,做逻辑运算
(7)map()运算完毕后将KV对收集到maptask缓存。
(8)maptask缓存中的KV对按照K分区排序后不断写到磁盘文件
(9)MRAppMaster监控到所有maptask进程任务完成之后,会根据客户指定的参数启动相应数量的reducetask进程,并告知reducetask进程要处理的数据分区。
(10)Reducetask进程启动之后,根据MRAppMaster告知的待处理数据所在位置,从若干台maptask运行所在机器上获取到若干个maptask输出结果文件,并在本地进行重新归并排序,然后按照相同key的KV为一个组,调用客户定义的reduce()方法进行逻辑运算。
(11)Reducetask运算完毕后,调用客户指定的outputformat将结果数据输出到外部存储。

二、Shuffle机制

Mapreduce确保每个reducer的输入都是按键排序的。系统执行排序的过程(即将map输出作为输入传给reducer)称为shuffle。

1、具体shuffle过程详解

(1)maptask收集我们的map()方法输出的kv对,放到内存缓冲区中
(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
(3)多个溢出文件会被合并成大的溢出文件
(4)在溢出过程中,及合并的过程中,都要调用partitoner进行分组和针对key进行排序
(5)reducetask根据自己的分区号,去各个maptask机器上取相应的结果分区数据
(6)reducetask会取到同一个分区的来自不同maptask的结果文件,reducetask会将这些文件再进行合并(归并排序)
(7)合并成大文件后,shuffle的过程也就结束了,后面进入reducetask的逻辑运算过程(从文件中取出一个一个的键值对group,调用用户自定义的reduce()方法)

2、注意

Shuffle中的缓冲区大小会影响到mapreduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。
缓冲区的大小可以通过参数调整,参数:io.sort.mb 默认100M

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lmh450201598

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值