poj 1679 The Unique MST (次小生成树)

本文探讨如何通过找出次小生成树来判断给定图的最小生成树是否唯一,详细介绍了算法步骤和实例解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

poj 1679 The Unique MST

Description
Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V’, E’), with the following properties:
1. V’ = V.
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E’) of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E’.

Input
The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output
For each input, if the MST is unique, print the total cost of it, or otherwise print the string ‘Not Unique!’.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!

题目大意:判断一张图的最小生成树的权值和是不是唯一的。
解题思路:找出该图的次小生成树,看最小生成树和次小生成树的权值和是否相同。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
using namespace std;

typedef long long ll;
const int N = 105;
const int INF = 0x3f3f3f3f;
int n, m;
int Max[N][N];
bool vis[N], used[N][N];
int dis[N][N], lowc[N];
int pre[N];

void init() {
    memset(vis, false, sizeof(vis));
    memset(used, false, sizeof(used));
    vis[1] = true;
    pre[1] = -1;
    lowc[1] = 0;
    for (int i = 2; i <= n; i++) {
        lowc[i] = dis[1][i];
        pre[i] = 1;
    }
}   

void input() {
    memset(dis, INF, sizeof(dis));
    int a, b, c;
    for (int i = 0; i < m; i++) {
        scanf("%d %d %d", &a, &b, &c);  
        dis[a][b] = dis[b][a] = c;
    }
}

int prim() {
    int ans = 0;  
    for (int i = 2; i <= n; i++) {  
        int minc = INF;    
        int p = 1;  
        for (int j = 1; j <= n; j++) {  
            if (!vis[j] && minc > lowc[j]) {  
                minc = lowc[j];   
                p = j;  
            }     
        }  
        if (pre[p] != -1) {  
            used[pre[p]][p] = used[p][pre[p]] = true;     
            for (int j = 1; j <= n; j++) {  
                if (vis[j]) {  
                    Max[j][p] = Max[p][j] = max(Max[j][pre[p]], lowc[p]);     
                }     
            }  
        }  
        ans += minc;  
        vis[p] = true;  
        for (int j = 1; j <= n; j++) {  
            if (!vis[j] && lowc[j] > dis[p][j]) {  
                lowc[j] = dis[p][j];  
                pre[j] = p;  
            }     
        }  
    }  
    return ans;  
}

void solve() {
    int MLT = prim();
    int SMLT = INF;
    for (int i = 1; i <= n; i++) {
        for (int j = i + 1; j <= n; j++) {
            if (!used[i][j] && dis[i][j] != INF) {
                SMLT = min(SMLT, MLT + dis[i][j] - Max[i][j]);              
            }   
        }   
    }
    if (MLT == SMLT) printf("Not Unique!\n");
    else printf("%d\n", MLT);
}

int main() {
    int T;
    scanf("%d", &T);
    while (T--) {
        scanf("%d %d", &n, &m); 
        input();
        init();
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值