文献学习-Generating Hard Instances of Lattice Problems

本文探讨了如何生成格问题的困难实例,如最短非零向量问题(P1)、唯一最短向量问题(P2)和最小基问题(P3)。作者提出随机问题与最坏情况问题之间的联系,并描述了随机格的构造方法,强调了其在多项式时间算法中的意义。证明过程和详细解释见附录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章,贼长、微笑<-看我绝望的眼神,和另一篇LWE的文章一起看的,简直要学傻了、、、、

未完,一直更新中。


Generating Hard Instances of Lattice Problems

生成格问题的一些困难实例

M. Ajtai

IBM Almaden Research Center

650 Harry Road, San Jose, CA, 95120

e-mail: ajtai@almaden.ibm.com 

Extended abstract

引入的问题

文章提出了3个worst-case problems

(P1)  Find the length of a shortest nonzero vector in a n dimensional lattice, approximately, up to a polynomial factor.
(P2)  Find the shortest nonzero vector in an n dimensional lattice L where the shortest vector v is unique in the sense that any other vector whose length is at most n^c||v|| is parallel to v, where c is a suffciently large absolute constant.
(P3)  Find a basis b1,... bn in the n-dimensional lattice L whose length, de ned as max||bi||, is the smallest possible up to a polynomial factor.

如果可能存在一个多项式算法,能够有至少1/2的概率,在多项式时间内找到随机格L中的最短向量,那么可能有多项式算法能近似解决上述三个问题之一(这三个问题都是worst-case)。


有两种情况说明一个问题非常困难:1、是一个NP-C问题;2、许多学者长期研究都无法解决的著名问题。长期以来人们一直认为,如果有一个多项式算法,有可观的概率解决随机生成的这些困难问题,那么它也能解决在最坏情况下的这些问题。文章中,提出一个随机问题,找出一类格中的最短向量,该问题的解决方法与最坏情况下的P1,P2,P3问题有密切关系。


关于Lattice的一些说明

### Orca Math Word Problems Dataset Overview The **Orca-Math** project focuses on generating a high-quality synthetic dataset specifically designed to unlock the potential of solving elementary school mathematics problems. This dataset contains 200,000 synthesized mathematical word problems created through a multi-agent system where agents collaborate to generate diverse and complex questions[^1]. #### Example Structure of Data Entries Each entry within this extensive dataset includes detailed information about various types of arithmetic operations such as addition, subtraction, multiplication, division, fractions, decimals, percentages, ratios, proportions, geometry concepts like area calculation, perimeter determination among others. ```json { "id": "problem_0001", "question": "If John has 8 apples and he gives away half of them to his friend, how many does he have left?", "answer": "John will have 4 apples remaining.", "difficulty_level": "easy" } ``` This structure ensures that each problem is well-defined with clear context provided by natural language descriptions along with correct answers for validation purposes during training models or educational applications development phases. #### Applications in Education Technology Such datasets can significantly enhance machine learning algorithms aimed at improving automated tutoring systems capable of understanding student queries better while providing accurate solutions tailored towards individual learners' needs over time based upon continuous feedback loops implemented into these platforms effectively enhancing personalized education experiences overall.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值