力扣—3.无重复字符的最长子串

3. 无重复字符的最长子串

给定一个字符串 s ,请你找出其中不含有重复字符的 最长 

子串

 的长度。

示例 1:

输入: s = "abcabcbb"
输出: 3 
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。

示例 2:

输入: s = "bbbbb"
输出: 1
解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。

示例 3:

输入: s = "pwwkew"
输出: 3
解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。
     请注意,你的答案必须是 子串 的长度,"pwke" 是一个子序列,不是子串。

提示:

  • 0 <= s.length <= 5 * 104
  • s 由英文字母、数字、符号和空格组成

整体思路:两个for循环嵌套,第一个 for 用于循环读取字符,每读取一个字符 s[i] ,我们就从第一个不重复的字符位置 start 开始遍历到当前字符的前一个位置 i-1 ,判断这个区间中是否有与 s[i] 重复的,如果有,则更新最长子串ans, start ,并break跳出循环,由于start位置更新 ans也得更新,两层循环结束,直接输出ans

代码:

class Solution {
public:
    int lengthOfLongestSubstring(string s) {
        int ans = 0;//答案
        int start = 0;//对比元素开始下标
        for (int i = 0; i < s.size(); ++i) {//遍历字符串
            for (int j = start; j < i; ++j) {//遍历字符串与之对比
                if (s[j] == s[i]) {//如果遍历到相同字符
                    ans = max(ans, i - start);//更新答案
                    start = j + 1;//将对比开始位置移到当前重复的下一个位置
                    break;//找到重的就退出本层循环
                }
            }
            ans = max(ans, i - start + 1);//更新ans。1.因为从一开始自身就算一个长度
                                        //2.start更新ans对应也需要更新
        }
        return ans;
    }
};

### 解法分析 解决“无重复字符最长子串”问题的高效方法是使用**滑动窗口**技巧。该方法通过维护一个窗口,窗口内始终不包含重复字符。窗口的左右边界分别由两个指针控制,通过哈希表或数组记录字符近出现的位置,从而判断是否需要移动左指针以保持窗口的有效性。 #### 1. 滑动窗口法 滑动窗口法的时间复杂度为 $O(n)$,其中 $n$ 是字符的长度。它通过单次遍历字符,动态调整窗口的左右边界,从而找出最长无重复字符子串。 ```cpp class Solution { public: int lengthOfLongestSubstring(string s) { vector<int> charIndex(128, -1); // 用于记录每个字符近出现的位置 int maxLen = 0; int start = 0; // 窗口的起始位置 for (int end = 0; end < s.size(); end++) { char currentChar = s[end]; if (charIndex[currentChar] >= start) { // 如果当前字符已经出现在窗口内,则更新窗口的起始位置 start = charIndex[currentChar] + 1; } charIndex[currentChar] = end; // 更新字符的位置 maxLen = max(maxLen, end - start + 1); // 计算当前窗口长度 } return maxLen; } }; ``` #### 2. 使用哈希表 除了使用固定大小的数组记录字符位置,也可以使用哈希表(`unordered_map`)来动态存储字符的位置信息。 ```cpp class Solution { public: int lengthOfLongestSubstring(string s) { unordered_map<char, int> charMap; int maxLen = 0; int start = 0; for (int end = 0; end < s.size(); end++) { if (charMap.count(s[end])) { // 如果字符已经出现过,并且其位置在窗口内,则更新窗口起始位置 start = max(start, charMap[s[end]] + 1); } charMap[s[end]] = end; // 更新字符的位置 maxLen = max(maxLen, end - start + 1); // 更新大长度 } return maxLen; } }; ``` #### 3. 使用布尔数组 另一种方法是使用布尔数组记录字符是否已经在当前窗口中出现,这种方法适用于字符集较小的情况(如 ASCII)。 ```cpp class Solution { public: int lengthOfLongestSubstring(string s) { bool used[128] = {false}; int maxLen = 0; int left = 0, right = 0; while (right < s.size()) { if (used[s[right]]) { // 如果当前字符已存在,则移动左指针并更新数组 used[s[left++]] = false; } else { used[s[right++]] = true; maxLen = max(maxLen, right - left); } } return maxLen; } }; ``` ### 总结 - **滑动窗口法**是优解法,时间复杂度为 $O(n)$,空间复杂度为 $O(m)$($m$ 为字符集大小)。 - **哈希表**方法灵活性更强,适用于字符集较大的情况。 - **布尔数组**方法适用于字符集较小的情况,实现简单且效率较高。 这些方法都可以通过 LeetCode 测试用例,并且在性能上表现良好。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值