一、实验内容:
(1)掌握LeNet、AlexNet、VGG、ResNet等经典CNN模型的核心架构思想,并使用PyTorch构建这些模型。
(2)通过在同一数据集(系统自带CIFAR-10数据集(10类,32×32彩色图像)和自定义猫狗数据集)上训练不同经典CNN模型,系统分析其参数量、计算效率、准确率等性能指标,理解各模型的优缺点。
(3)学会针对不同模型选择合适的优化策略(SGD、Adam),并能根据具体应用场景(如精度要求、资源限制)选择合适的模型。
二、代码示例:
# 实验环境:
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
import torchvision.transforms as transforms
from torchsummary import summary
import numpy as np
import matplotlib.pyplot as plt
import time
from collections import OrderedDict
import copy
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# 数据集:CIFAR-10(10类,32×32彩色图像)
# 数据预处理与增强:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
# 三种经典CNN模型
# 1 LeNet-5(适配CIFAR-10)
class LeNet(nn.Module):
def __init__(self, num_classes=10):
super(LeNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 6, kernel_size=5), # 3@32x32 -> 6@28x28
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2), # 6@28x28 -> 6@14x14
nn.Conv2d(6, 16, kernel_size=5), # 6@14x14 -> 16@10x10
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2) # 16@10x10 -> 16@5x5
)
self.classifier = nn.Sequential(
nn.Linear(16 * 5 * 5, 120),
nn.ReLU(inplace=True),
nn.Linear(120, 84),
nn.ReLU(inplace=True),
nn.Linear(84, num_classes)
)
def forward(self, x):
x = self.features(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
# 2 AlexNet(简化版适配CIFAR-10)
class AlexNet(nn.Module):
def __init__(self, num_classes=10, dropout=0.5):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1), # 3@32x32 -> 64@16x16
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2), # 64@16x16 -> 64@8x8
nn.Conv2d(64, 192, kernel_size=3, padding=1), # 64@8x8 -> 192@8x8
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2), # 192@8x8 -> 192@4x4
nn.Conv2d(192, 384, kernel_size=3, padding=1), # 192@4x4 -> 384@4x4
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1), # 384@4x4 -> 256@4x4
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1), # 256@4x4 -> 256@4x4
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2) # 256@4x4 -> 256@2x2
)
self.classifier = nn.Sequential(
nn.Dropout(p=dropout),
nn.Linear(256 * 2 * 2, 4096),
nn.ReLU(inplace=True),
nn.Dropout(p=dropout),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
# 3 VGG-11(简化版)
class VGG11(nn.Module):
def __init__(self, num_classes=10, dropout=0.5):
super(VGG11, self).__init__()
self.features = self._make_layers()
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(p=dropout),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(p=dropout),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
def _make_layers(self):
layers = []
in_channels = 3
cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, v, kernel_size=3, padding=1),
nn.BatchNorm2d(v),
nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
# 模型分析对比
def analyze_model(model, model_name):
print(f"\n=== {model_name} 模型分析 ===")
# 参数量统计
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"总参数量: {total_params:,}")
print(f"可训练参数量: {trainable_params:,}")
# 模型结构概览
summary(model.to(device), (3, 32, 32))
return total_params
# 分析三个模型
models = {
"LeNet": LeNet(),
"AlexNet": AlexNet(),
"VGG-11": VGG11()
}
param_counts = {}
for name, model in models.items():
param_counts[name] = analyze_model(model, name)
# 统一训练框架
def train_model(model, trainloader, testloader, criterion, optimizer, scheduler, num_epochs=50, model_name='model'):
model = model.to(device)
best_acc = 0.0
history = {'train_loss': [], 'train_acc': [], 'val_loss': [], 'val_acc': []}
for epoch in range(num_epochs):
# 训练阶段
model.train()
running_loss = 0.0
running_corrects = 0
for inputs, labels in trainloader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if scheduler:
scheduler.step()
epoch_loss = running_loss / len(trainloader.dataset)
epoch_acc = running_corrects.double() / len(trainloader.dataset)
history['train_loss'].append(epoch_loss)
history['train_acc'].append(epoch_acc.item())
# 验证阶段
model.eval()
val_loss = 0.0
val_corrects = 0
with torch.no_grad():
for inputs, labels in testloader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
val_loss += loss.item() * inputs.size(0)
val_corrects += torch.sum(preds == labels.data)
val_loss = val_loss / len(testloader.dataset)
val_acc = val_corrects.double() / len(testloader.dataset)
history['val_loss'].append(val_loss)
history['val_acc'].append(val_acc.item())
if val_acc > best_acc:
best_acc = val_acc
best_model_wts = copy.deepcopy(model.state_dict())
if epoch % 10 == 0:
print(f'Epoch {epoch:2d}: Train Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f} | Val Loss: {val_loss:.4f} Acc: {val_acc:.4f}')
model.load_state_dict(best_model_wts)
return model, history, best_acc
# 不同优化策略实验
def experiment_with_optimizers(model_class, model_name):
print(f"\n=== 优化器对比实验: {model_name} ===")
results = {}
# 实验1: Adam优化器
model = model_class().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=5e-4)
scheduler = lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
model_trained, history, best_acc = train_model(
model, trainloader, testloader, criterion, optimizer, scheduler,
num_epochs=50, model_name=f"{model_name}_Adam"
)
results['Adam'] = {'history': history, 'best_acc': best_acc}
# 实验2: SGD with Momentum
model = model_class().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
scheduler = lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
model_trained, history, best_acc = train_model(
model, trainloader, testloader, criterion, optimizer, scheduler,
num_epochs=50, model_name=f"{model_name}_SGD"
)
results['SGD'] = {'history': history, 'best_acc': best_acc}
return results
# 对每个模型进行优化器对比
optimizer_results = {}
for name, model_class in [('LeNet', LeNet), ('AlexNet', AlexNet), ('VGG-11', VGG11)]:
optimizer_results[name] = experiment_with_optimizers(model_class, name)
# 结果可视化与分析
def plot_comparison(results_dict, title):
plt.figure(figsize=(15, 10))
# 准确率对比
plt.subplot(2, 2, 1)
for model_name, optimizers in results_dict.items():
for opt_name, result in optimizers.items():
plt.plot(result['history']['val_acc'],
label=f'{model_name}_{opt_name}', alpha=0.7)
plt.title('Validation Accuracy Comparison')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
# 参数量 vs 最佳准确率
plt.subplot(2, 2, 2)
model_names = []
best_accs = []
params = []
for model_name in results_dict.keys():
best_acc = max([r['best_acc'] for r in results_dict[model_name].values()])
model_names.append(model_name)
best_accs.append(best_acc.cpu().numpy())
params.append(param_counts[model_name])
plt.scatter(params, best_accs)
for i, txt in enumerate(model_names):
plt.annotate(txt, (params[i], best_accs[i]))
plt.xscale('log')
plt.title('Model Size vs Best Accuracy')
plt.xlabel('Parameters (log scale)')
plt.ylabel('Best Accuracy')
plt.tight_layout()
plt.show()
plot_comparison(optimizer_results, 'Model Comparison')
三、实验结果与分析
1. 自定义增加 ResNet等至少一个经典CNN模型进行对比分析。
2. 至少构造一个自定义数据集(比如猫狗数据集)进行实战。
3. 针对所实验的经典CNN模型从参数量、准备率、优缺点、训练时间等角度进行对比分析。
4. 根据实验训练情况对比分析SGD,Adam优化器。
5. 适当调整学习率、批次大小、运用Dropout、BN等策略,分析其性能影响。