Flink DatastreamAPI详解(四)

Session Windows

会话窗口是一种基于数据活跃度动态划分的特殊窗口类型,与滚动窗口和滑动窗口完全不同。

1. 事件时间会话窗口(静态间隔)

input
    .keyBy(<key selector>)
    .window(EventTimeSessionWindows.withGap(Time.minutes(10)))
    //                              ^^^^^^^^^^^^^^^^^^^^^^^
    //                              会话间隔(gap):10分钟无数据则关闭窗口
    .<windowed transformation>(<window function>);

2. 事件时间会话窗口(动态间隔)

input
    .keyBy(<key selector>)
    .window(EventTimeSessionWindows.withDynamicGap((element) -> {
        // 根据元素动态决定gap
        return element.getCustomTimeout();  // 可以为不同元素设置不同的gap
    }))
    .<windowed transformation>(<window function>);

3. 处理时间会话窗口(静态间隔)

input
    .keyBy(<key selector>)
    .window(ProcessingTimeSessionWindows.withGap(Time.minutes(10)))
    .<windowed transformation>(<window function>);

4. 处理时间会话窗口(动态间隔)

input
    .keyBy(<key selector>)
    .window(ProcessingTimeSessionWindows.withDynamicGap((element) -> {
        // 根据元素动态决定gap
    }))
    .<windowed transformation>(<window function>);

核心概念:会话窗口(Session Window)

什么是会话窗口?

会话窗口是基于数据活跃度划分的窗口:

  • 🔥 有数据到达:窗口保持活跃
  • ❄️ 超过gap时间无数据:窗口关闭
  • 📦 窗口大小不固定:根据数据到达情况动态调整

Session Gap(会话间隔)的含义

Session Gap:两条数据之间的最大允许间隔时间

如果 gap = 10分钟,表示:
- 两条数据间隔 < 10分钟 → 属于同一个会话窗口
- 两条数据间隔 ≥ 10分钟 → 属于不同的会话窗口

窗口划分示意图

用户点击事件(gap = 30秒):

时间轴:
0s   5s   10s  15s  20s  25s  30s  40s  50s  70s  75s  80s
|    |    |    |              |    |         |    |    |
E1   E2   E3   E4             E5   E6        E7   E8   E9

会话窗口划分:

会话1: [0s - 50s)
  包含:E1, E2, E3, E4, E5, E6
  原因:E1到E6之间任意两个事件的间隔都 < 30秒
  窗口关闭:E6之后30秒无数据(到80s时)

会话2: [70s - 110s)
  包含:E7, E8, E9
  原因:E7到E9之间间隔 < 30秒
  窗口关闭:E9之后30秒无数据

特点:
- 窗口大小不固定(会话1是50秒,会话2是40秒)
- 基于数据活跃度动态调整
- E6和E7之间间隔40秒 > 30秒,所以分属不同会话

会话窗口 vs 滚动/滑动窗口

特性滚动/滑动窗口会话窗口
窗口大小固定动态变化
窗口边界预定义数据驱动
窗口数量可预测不可预测
适用场景周期性统计用户会话分析

详细示例

示例1:事件时间会话窗口(静态gap)- 用户行为分析

public class EventTimeSessionWindowExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = 
            StreamExecutionEnvironment.getExecutionEnvironment();
        
        // 模拟用户点击事件
        DataStream<UserClick> clicks = env.fromElements(
            new UserClick("user1", "/home", 1000L),      // 1秒
            new UserClick("user1", "/product", 3000L),   // 3秒
            new UserClick("user1", "/cart", 5000L),      // 5秒
            // --- 10秒无活动,会话1结束 ---
            new UserClick("user1", "/home", 16000L),     // 16秒(新会话)
            new UserClick("user1", "/product", 18000L),  // 18秒
            // --- 10秒无活动,会话2结束 ---
            new UserClick("user2", "/home", 2000L),      // 2秒
            new UserClick("user2", "/login", 4000L)      // 4秒
        );
        
        // 分配时间戳和Watermark
        DataStream<UserClick> withTimestamps = clicks.assignTimestampsAndWatermarks(
            WatermarkStrategy.<UserClick>forMonotonousTimestamps()
                .withTimestampAssigner((click, ts) -> click.timestamp)
        );
        
        // 会话窗口:10秒无活动则关闭会话
        withTimestamps
            .keyBy(click -> click.userId)
            .window(EventTimeSessionWindows.withGap(Time.seconds(10)))
            .process(new ProcessWindowFunction<UserClick, String, String, TimeWindow>() {
                @Override
                public void process(
                    String userId,
                    Context ctx,
                    Iterable<UserClick> clicks,
                    Collector<String> out
                ) {
                    List<String> pages = new ArrayList<>();
                    int clickCount = 0;
                    
                    for (UserClick click : clicks) {
                        pages.add(click.page);
                        clickCount++;
                    }
                    
                    long sessionDuration = ctx.window().getEnd() - ctx.window().getStart();
                    
                    out.collect(String.format(
                        "User: %s, Session: [%d-%d]ms, Duration: %dms, " +
                        "Clicks: %d, Path: %s",
                        userId,
                        ctx.window().getStart(),
                        ctx.window().getEnd(),
                        sessionDuration,
                        clickCount,
                        String.join(" → ", pages)
                    ));
                }
            })
            .print();
        
        env.execute("Event-Time Session Window");
    }
    
    static class UserClick {
        String userId;
        String page;
        Long timestamp;
        
        UserClick(String userId, String page, Long timestamp) {
            this.userId = userId;
            this.page = page;
            this.timestamp = timestamp;
        }
    }
}

/* 输出:
User: user1, Session: [1000-15000]ms, Duration: 14000ms, 
      Clicks: 3, Path: /home → /product → /cart

User: user1, Session: [16000-28000]ms, Duration: 12000ms, 
      Clicks: 2, Path: /home → /product

User: user2, Session: [2000-14000]ms, Duration: 12000ms, 
      Clicks: 2, Path: /home → /login

解释:
- user1的前3次点击形成第一个会话(间隔都<10秒)
- 第3次点击(5s)到第4次点击(16s)间隔11秒>10秒,所以是新会话
- user2的2次点击间隔2秒<10秒,属于同一会话
*/

示例2:动态gap会话窗口 - VIP用户特殊处理

public class DynamicGapSessionWindowExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = 
            StreamExecutionEnvironment.getExecutionEnvironment();
        
        // 用户事件(VIP用户和普通用户)
        DataStream<UserEvent> events = env.fromElements(
            new UserEvent("user1", "click", 1000L, true),   // VIP用户
            new UserEvent("user1", "view", 25000L, true),   // 25秒后
            new UserEvent("user2", "click", 2000L, false),  // 普通用户
            new UserEvent("user2", "view", 12000L, false)   // 10秒后
        );
        
        DataStream<UserEvent> withTimestamps = events.assignTimestampsAndWatermarks(
            WatermarkStrategy.<UserEvent>forMonotonousTimestamps()
                .withTimestampAssigner((event, ts) -> event.timestamp)
        );
        
        // 动态gap:VIP用户30分钟,普通用户10分钟
        withTimestamps
            .keyBy(event -> event.userId)
            .window(EventTimeSessionWindows.withDynamicGap(
                new SessionWindowTimeGapExtractor<UserEvent>() {
                    @Override
                    public long extract(UserEvent event) {
                        if (event.isVip) {
                            return 30 * 60 * 1000L;  // VIP:30分钟
                        } else {
                            return 10 * 60 * 1000L;  // 普通:10分钟
                        }
                    }
                }
            ))
            .process(new ProcessWindowFunction<UserEvent, String, String, TimeWindow>() {
                @Override
                public void process(
                    String userId,
                    Context ctx,
                    Iterable<UserEvent> events,
                    Collector<String> out
                ) {
                    int eventCount = 0;
                    String userType = "";
                    
                    for (UserEvent event : events) {
                        eventCount++;
                        userType = event.isVip ? "VIP" : "Regular";
                    }
                    
                    out.collect(String.format(
                        "User: %s (%s), Events: %d, Window: [%d-%d]ms",
                        userId, userType, eventCount,
                        ctx.window().getStart(), ctx.window().getEnd()
                    ));
                }
            })
            .print();
        
        env.execute("Dynamic Gap Session Window");
    }
    
    static class UserEvent {
        String userId;
        String action;
        Long timestamp;
        boolean isVip;
        
        UserEvent(String userId, String action, Long timestamp, boolean isVip) {
            this.userId = userId;
            this.action = action;
            this.timestamp = timestamp;
            this.isVip = isVip;
        }
    }
}

/* 输出:
User: user1 (VIP), Events: 2, Window: [1000-1800000]ms
  - 两次事件间隔24秒 < 30分钟,属于同一会话

User: user2 (Regular), Events: 1, Window: [2000-602000]ms
  - 第一个事件单独成会话
  
User: user2 (Regular), Events: 1, Window: [12000-612000]ms
  - 第二个事件单独成会话(间隔10秒=gap,刚好分割)
*/

示例3:处理时间会话窗口 - 实时用户会话监控

public class ProcessingTimeSessionWindowExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = 
            StreamExecutionEnvironment.getExecutionEnvironment();
        
        // 模拟实时用户活动流
        DataStream<String> userActivities = env
            .socketTextStream("localhost", 9999)
            .map(line -> line);  // 格式: userId,action
        
        // 处理时间会话窗口:5分钟无活动则关闭会话
        userActivities
            .map(line -> {
                String[] parts = line.split(",");
                return new Tuple2<>(parts[0], parts[1]);
            })
            .keyBy(tuple -> tuple.f0)
            .window(ProcessingTimeSessionWindows.withGap(Time.minutes(5)))
            .process(new ProcessWindowFunction<
                Tuple2<String, String>, String, String, TimeWindow>() {
                
                @Override
                public void process(
                    String userId,
                    Context ctx,
                    Iterable<Tuple2<String, String>> activities,
                    Collector<String> out
                ) {
                    int activityCount = 0;
                    List<String> actions = new ArrayList<>();
                    
                    for (Tuple2<String, String> activity : activities) {
                        activityCount++;
                        actions.add(activity.f1);
                    }
                    
                    // 处理时间窗口信息
                    SimpleDateFormat sdf = new SimpleDateFormat("HH:mm:ss");
                    String startTime = sdf.format(new Date(ctx.window().getStart()));
                    String endTime = sdf.format(new Date(ctx.window().getEnd()));
                    
                    out.collect(String.format(
                        "User: %s, Session: %s to %s, Activities: %d, Actions: %s",
                        userId, startTime, endTime, activityCount,
                        String.join(", ", actions)
                    ));
                }
            })
            .print();
        
        /* 使用方式(在终端输入):
        $ nc -lk 9999
        user1,login
        user1,browse
        user1,add_to_cart
        (等待5分钟无输入,会话1关闭)
        user1,login
        user1,checkout
        (等待5分钟无输入,会话2关闭)
        
        输出:
        User: user1, Session: 10:00:00 to 10:05:30, 
              Activities: 3, Actions: login, browse, add_to_cart
        User: user1, Session: 10:12:00 to 10:17:45, 
              Activities: 2, Actions: login, checkout
        */
        
        env.execute("Processing-Time Session Window");
    }
}

常见应用场景

场景1:用户会话分析(最经典)

// 统计用户每次会话的行为路径和时长
userClicks
    .keyBy(click -> click.userId)
    .window(EventTimeSessionWindows.withGap(Time.minutes(30)))
    .process(new ProcessWindowFunction<Click, UserSession, String, TimeWindow>() {
        public void process(String userId, Context ctx,
                           Iterable<Click> clicks, Collector<UserSession> out) {
            List<String> visitPath = new ArrayList<>();
            long sessionStart = Long.MAX_VALUE;
            long sessionEnd = Long.MIN_VALUE;
            
            for (Click click : clicks) {
                visitPath.add(click.page);
                sessionStart = Math.min(sessionStart, click.timestamp);
                sessionEnd = Math.max(sessionEnd, click.timestamp);
            }
            
            UserSession session = new UserSession(
                userId,
                visitPath,
                sessionEnd - sessionStart,  // 会话时长
                visitPath.size()            // 页面浏览数
            );
            
            out.collect(session);
        }
    });

/* 分析指标:
- 会话时长分布
- 平均页面浏览数
- 转化路径分析
- 跳出率统计
*/

场景2:物联网设备活跃监控

// 监控设备活跃状态,超过5分钟无数据上报认为离线
sensorData
    .keyBy(data -> data.deviceId)
    .window(ProcessingTimeSessionWindows.withGap(Time.minutes(5)))
    .process(new ProcessWindowFunction<SensorData, Alert, String, TimeWindow>() {
        public void process(String deviceId, Context ctx,
                           Iterable<SensorData> dataPoints, 
                           Collector<Alert> out) {
            int dataCount = 0;
            for (SensorData data : dataPoints) {
                dataCount++;
            }
            
            long sessionDuration = ctx.window().getEnd() - ctx.window().getStart();
            
            // 会话结束意味着设备可能离线
            out.collect(new Alert(
                deviceId,
                "Device session ended",
                String.format("Active for %d minutes, %d data points",
                    sessionDuration / 60000, dataCount)
            ));
        }
    });

场景3:欺诈检测(异常会话识别)

// 检测异常交易会话
transactions
    .keyBy(tx -> tx.userId)
    .window(EventTimeSessionWindows.withDynamicGap(
        tx -> {
            // 深夜交易使用更短的gap(更敏感)
            int hour = getHourOfDay(tx.timestamp);
            if (hour >= 0 && hour <= 6) {
                return 5 * 60 * 1000L;  // 5分钟
            } else {
                return 15 * 60 * 1000L; // 15分钟
            }
        }
    ))
    .process(new ProcessWindowFunction<Transaction, FraudAlert, String, TimeWindow>() {
        public void process(String userId, Context ctx,
                           Iterable<Transaction> transactions,
                           Collector<FraudAlert> out) {
            double totalAmount = 0;
            int txCount = 0;
            Set<String> locations = new HashSet<>();
            
            for (Transaction tx : transactions) {
                totalAmount += tx.amount;
                txCount++;
                locations.add(tx.location);
            }
            
            // 异常检测规则
            boolean suspicious = false;
            String reason = "";
            
            // 规则1:短时间大额交易
            if (txCount > 10 && totalAmount > 10000) {
                suspicious = true;
                reason = "High frequency + High amount";
            }
            
            // 规则2:跨地域交易
            if (locations.size() > 3) {
                suspicious = true;
                reason = "Multiple locations";
            }
            
            if (suspicious) {
                out.collect(new FraudAlert(userId, reason, totalAmount, txCount));
            }
        }
    });

场景4:客服对话会话分组

// 将客服对话按会话分组,5分钟无消息则结束对话
chatMessages
    .keyBy(msg -> msg.conversationId)
    .window(ProcessingTimeSessionWindows.withGap(Time.minutes(5)))
    .process(new ProcessWindowFunction<ChatMessage, ConversationSummary, String, TimeWindow>() {
        public void process(String conversationId, Context ctx,
                           Iterable<ChatMessage> messages,
                           Collector<ConversationSummary> out) {
            int messageCount = 0;
            int customerMessages = 0;
            int agentMessages = 0;
            boolean resolved = false;
            
            for (ChatMessage msg : messages) {
                messageCount++;
                if (msg.sender.equals("customer")) {
                    customerMessages++;
                } else {
                    agentMessages++;
                }
                if (msg.content.contains("已解决") || msg.content.contains("谢谢")) {
                    resolved = true;
                }
            }
            
            long duration = ctx.window().getEnd() - ctx.window().getStart();
            
            out.collect(new ConversationSummary(
                conversationId,
                duration / 1000,  // 对话时长(秒)
                messageCount,
                resolved
            ));
        }
    });

场景5:游戏玩家会话分析

// 分析玩家游戏会话,30分钟无操作视为下线
playerActions
    .keyBy(action -> action.playerId)
    .window(EventTimeSessionWindows.withGap(Time.minutes(30)))
    .process(new ProcessWindowFunction<PlayerAction, GameSession, String, TimeWindow>() {
        public void process(String playerId, Context ctx,
                           Iterable<PlayerAction> actions,
                           Collector<GameSession> out) {
            int kills = 0;
            int deaths = 0;
            int score = 0;
            
            for (PlayerAction action : actions) {
                switch (action.type) {
                    case "kill": kills++; break;
                    case "death": deaths++; break;
                    case "score": score += action.points; break;
                }
            }
            
            long sessionDuration = ctx.window().getEnd() - ctx.window().getStart();
            
            out.collect(new GameSession(
                playerId,
                sessionDuration / 60000,  // 游戏时长(分钟)
                kills,
                deaths,
                score
            ));
        }
    });

/* 可分析:
- 平均游戏时长
- KDA比率
- 玩家留存率
- 高峰时段
*/

静态Gap vs 动态Gap对比

静态Gap(固定间隔)

// 适用场景:所有用户使用相同的会话超时时间
.window(EventTimeSessionWindows.withGap(Time.minutes(10)))

// 优点:
// 1. 简单直观
// 2. 性能较好
// 3. 适合大多数场景

// 缺点:
// 1. 不够灵活
// 2. 无法针对不同情况定制

动态Gap(可变间隔)

// 适用场景:根据业务规则动态调整超时时间
.window(EventTimeSessionWindows.withDynamicGap(
    (element) -> {
        // 根据用户等级
        if (element.getUserLevel().equals("VIP")) {
            return 60 * 60 * 1000L;  // VIP:1小时
        } else if (element.getUserLevel().equals("PREMIUM")) {
            return 30 * 60 * 1000L;  // 高级:30分钟
        } else {
            return 10 * 60 * 1000L;  // 普通:10分钟
        }
        
        // 或根据时段
        // int hour = getHourOfDay(element.getTimestamp());
        // if (hour >= 9 && hour <= 18) {
        //     return 5 * 60 * 1000L;   // 工作时间:5分钟
        // } else {
        //     return 30 * 60 * 1000L;  // 非工作时间:30分钟
        // }
    }
))

// 优点:
// 1. 高度灵活
// 2. 可针对不同场景定制
// 3. 更精准的会话划分

// 缺点:
// 1. 逻辑复杂
// 2. 性能略差
// 3. 需要仔细设计规则

事件时间 vs 处理时间(会话窗口)

特性EventTimeSessionWindowsProcessingTimeSessionWindows
时间基准数据时间戳系统处理时间
确定性✅ 结果确定❌ 结果不确定
乱序处理✅ 支持❌ 不支持
配置复杂度需要Watermark无需配置
适用场景离线分析、精确统计实时监控、简单告警

窗口合并机制

会话窗口有特殊的窗口合并机制:

// 会话窗口合并示例

初始状态(gap = 30秒):
Event1(t=0):  创建窗口[0, 30)
Event2(t=10): 窗口扩展为[0, 40)
Event3(t=25): 窗口扩展为[0, 55)
Event4(t=60): 创建新窗口[60, 90)(与前一窗口间隔>30秒)

如果此时收到延迟Event(t=50):
- Event时间在两个窗口之间
- 窗口[0, 55)扩展为[0, 80)
- 窗口[60, 90)被合并进来
- 最终形成一个大窗口[0, 90)

这就是会话窗口的动态合并特性!

性能考虑

状态管理

// 会话窗口需要维护更多状态

// ❌ 会话窗口:状态开销较大
.window(EventTimeSessionWindows.withGap(Time.minutes(30)))
// 需要维护:
// 1. 每个活跃会话的所有数据
// 2. 会话边界信息
// 3. 可能的窗口合并信息

// ✅ 滚动窗口:状态开销较小(使用增量聚合)
.window(TumblingEventTimeWindows.of(Time.minutes(5)))
.reduce((v1, v2) -> v1 + v2)  // 只保存累积值

优化建议

// 1. 使用增量聚合减少状态
.window(EventTimeSessionWindows.withGap(Time.minutes(30)))
.aggregate(new AggregateFunction<...>() {
    // 增量计算,只保存聚合结果
});

// 2. 设置合理的gap
// ❌ gap太大:会话很长,状态占用大
.window(EventTimeSessionWindows.withGap(Time.hours(24)))

// ✅ gap适中:平衡准确性和性能
.window(EventTimeSessionWindows.withGap(Time.minutes(30)))

// 3. 设置状态TTL
StreamExecutionEnvironment env = ...;
env.getConfig().setAutoWatermarkInterval(1000L);
// 及时清理过期会话状态

完整实战示例

public class CompleteSessionWindowExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = 
            StreamExecutionEnvironment.getExecutionEnvironment();
        
        // 模拟电商用户行为数据
        DataStream<UserBehavior> behaviors = env.fromElements(
            new UserBehavior("user1", "view", "product1", 1000L),
            new UserBehavior("user1", "view", "product2", 3000L),
            new UserBehavior("user1", "cart", "product1", 5000L),
            // 15分钟后
            new UserBehavior("user1", "view", "product3", 905000L),
            new UserBehavior("user1", "purchase", "product3", 910000L)
        );
        
        DataStream<UserBehavior> withTimestamps = behaviors.assignTimestampsAndWatermarks(
            WatermarkStrategy.<UserBehavior>forMonotonousTimestamps()
                .withTimestampAssigner((behavior, ts) -> behavior.timestamp)
        );
        
        // 会话窗口:10分钟无活动则结束会话
        withTimestamps
            .keyBy(behavior -> behavior.userId)
            .window(EventTimeSessionWindows.withGap(Time.minutes(10)))
            .aggregate(
                // 增量聚合
                new AggregateFunction<UserBehavior, SessionAccumulator, SessionAccumulator>() {
                    public SessionAccumulator createAccumulator() {
                        return new SessionAccumulator();
                    }
                    
                    public SessionAccumulator add(UserBehavior behavior, 
                                                  SessionAccumulator acc) {
                        acc.behaviorCount++;
                        acc.behaviors.add(behavior.action);
                        if (behavior.action.equals("purchase")) {
                            acc.converted = true;
                        }
                        return acc;
                    }
                    
                    public SessionAccumulator getResult(SessionAccumulator acc) {
                        return acc;
                    }
                    
                    public SessionAccumulator merge(SessionAccumulator a, 
                                                    SessionAccumulator b) {
                        a.behaviorCount += b.behaviorCount;
                        a.behaviors.addAll(b.behaviors);
                        a.converted = a.converted || b.converted;
                        return a;
                    }
                },
                // 窗口函数(获取窗口信息)
                new ProcessWindowFunction<SessionAccumulator, String, String, TimeWindow>() {
                    public void process(String userId, Context ctx,
                                       Iterable<SessionAccumulator> results,
                                       Collector<String> out) {
                        SessionAccumulator result = results.iterator().next();
                        
                        long duration = ctx.window().getEnd() - ctx.window().getStart();
                        
                        out.collect(String.format(
                            "User: %s\n" +
                            "  Session Duration: %d seconds\n" +
                            "  Behavior Count: %d\n" +
                            "  Behavior Path: %s\n" +
                            "  Converted: %s",
                            userId,
                            duration / 1000,
                            result.behaviorCount,
                            String.join(" → ", result.behaviors),
                            result.converted ? "Yes" : "No"
                        ));
                    }
                }
            )
            .print();
        
        env.execute("Complete Session Window Example");
    }
    
    static class UserBehavior {
        String userId;
        String action;
        String productId;
        Long timestamp;
        
        UserBehavior(String userId, String action, String productId, Long timestamp) {
            this.userId = userId;
            this.action = action;
            this.productId = productId;
            this.timestamp = timestamp;
        }
    }
    
    static class SessionAccumulator {
        int behaviorCount = 0;
        List<String> behaviors = new ArrayList<>();
        boolean converted = false;
    }
}

/* 输出:
User: user1
  Session Duration: 4 seconds
  Behavior Count: 3
  Behavior Path: view → view → cart
  Converted: No

User: user1
  Session Duration: 5 seconds
  Behavior Count: 2
  Behavior Path: view → purchase
  Converted: Yes
*/

关键要点总结

  1. 会话窗口特点:基于数据活跃度动态划分,窗口大小不固定
  2. Session Gap:两条数据间最大允许间隔,超过则分割会话
  3. 静态vs动态Gap:静态固定超时,动态可根据元素定制
  4. 事件时间vs处理时间:事件时间确定性强,处理时间实时性好
  5. 窗口合并:会话窗口可以动态合并(延迟数据填补间隙)
  6. ⚠️ 适用场景:用户会话分析、设备活跃监控、对话分组
  7. ⚠️ 性能开销:状态占用较大,需合理设置gap和使用增量聚合
  8. ⚠️ 与其他窗口区别:滚动/滑动窗口固定边界,会话窗口动态边界
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值