输入整数N,求1~n这N个十进制数中1出现的次数
解法一:粗暴遍历,再计算每个数字包含1的个数,总数累加,O(n),有些数字没有必要走,比如22~30不可能出现1
解法二:N变成数组,观察各个位数的特点,递归地拆分最高位和低位两部分,计算1出现的情况,反应不够快的话,就背吧
解法一:
int getNumOf1(int n)//diy
{
int numof1 = 0;
while (n>0)
{
if (n % 10 == 1)
numof1++;
n /= 10;
}
return numof1;
}
int NumberOf1Between1AndN_Solution3(int n)//diy
{
if (n <= 0) return 0;
int NumOf1 = 0;
for (int i = 1; i <= n; i++)
NumOf1 += getNumOf1(i);
return NumOf1;
}
int getPowerBase10(int exponent)
{
if (exponent <= 0) return 1;
int ret = 10;
for (int i = 1; i < exponent; i++)
ret *= 10;
return ret;
}
解法二:
int getNumOf1(int* Arr, int length, int currPos)//diy
{
if (currPos >= length) return 0;
if (currPos==length-1)
{
if (Arr[currPos]<1)
return 0;
else
return 1;
}
int sumof1 = 0;
if (Arr[currPos]>1)
sumof1 += getPowerBase10(length - currPos-1);
else if (Arr[currPos]==1)
{
for (int i = length - 1; i > currPos;i--)
sumof1 += Arr[i] * getPowerBase10(length - i - 1);
sumof1++;
}
sumof1 += Arr[currPos] * (length - currPos - 1)*getPowerBase10(length - currPos - 2);
sumof1 += getNumOf1(Arr, length, currPos + 1);
return sumof1;
}
int NumberOf1Between1AndN_Solution4(int n)//diy
{
if (n <= 0) return 0;
int len = 0;
for (int m = n; m > 0; m /= 10)
len++;
int* Arr = new int[len]();
int temp = n;
for (int i = len - 1; i >= 0;i--)
{
Arr[i] = temp % 10;
temp /= 10;
}
return getNumOf1(Arr, len, 0);
}