HDU 1711

本文介绍了一种使用KMP算法进行高效字符串匹配的方法。通过解析一个具体的问题实例——寻找两个数列间的关系,文章详细阐述了如何利用KMP算法来解决这一问题。包括KMP算法的基本原理、关键步骤如next数组的构建,以及完整的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门 :

Number Sequence

 


Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one. 
InputThe first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000]. 
OutputFor each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead. 
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
Sample Output
6
-1

 用 KMP 来进行字符串匹配

#include<iostream>
using namespace std;
int a[1000005], b[1000005];
int n, m, ne[1000005];
void GetNext(int *p)
{
    int i = 0, j = -1;
    ne[0] = -1;
    while (i < m)
    {
        if (j == -1 || p[i] == p[j]) ne[++i] = ++j;
        else j = ne[j];
    }
}
int Kmp(int *a,int *b)
{
    int i = 0, j = 0;
    while (i < n&&j < m)
    {
        if (j == -1 || a[i] == b[j]) ++i, ++j;
        else j = ne[j];
    }
    if (j == m) return i - j + 1;
    else return -1;
}
int main(){
    int i, N;
    cin>>N;
    while(N--){
        cin>>n>>m;
        for (i = 0; i < n; ++i)
            cin>>a[i];
        for (i = 0; i < m; ++i)
            cin>>b[i];
        GetNext(b);
        cout<<Kmp(a,b)<<endl;
    }
    return 0;
}
有点晕...

 传送门:KMP 算法详细讲解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值