二叉树【链表实现】基础练习

本文介绍了一种基于链表实现二叉树的方法,并详细解释了节点的结构及树的操作,包括添加、删除节点和三种遍历方式。通过具体代码示例展示了如何构建和操作二叉树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是二叉树结构图:
这里写图片描述
可以看出每个节点都有一个数据域、一个索引、三个节点指针:父节点指针、左孩子结点指针、右孩子结点指针。这样才能根连着枝再连着叶
父节点相当于单链表的指针,把根和非终端节点连接在一起。
demo.cpp

/**************************************/
/*
二叉树:链表实现

Tree();                                                //创建树
~Tree();                                               //销毁树
Node *SerachNode(int nodeIndex);                       //搜索节点
bool AddNode(int nodeIndex,int direction,Node*pNode);  //添加节点
bool DeleteNode(int nodeIndex,Node*PNode);             //删除节点
void PreorderTraverse();                               //前序遍历
void InorderTraverse();                                //中序遍历
void PostorderTraverse();                              //后序遍历

节点要素:索引 数据 左孩子指针 右孩子指针
                 (0)
       5(1)              8(2)
   2(3 ) 6(4)        9(5) 7(6)
前:0134256
中:3140526
后:3415620

   */
/***************************************/

#include<windows.h>
#include"Tree.h"
void funtest1()
{
    Node*node1 = new Node();
    node1->index = 1;
    node1->data = 5;
    Node*node2 = new Node();
    node2->index = 2;
    node2->data = 8;


    Node*node3 = new Node();
    node3->index = 3;
    node3->data = 2;
    Node*node4 = new Node();
    node4->index = 4;
    node4->data = 6;
    Node*node5 = new Node();
    node5->index = 5;
    node5->data = 9;
    Node*node6 = new Node();
    node6->index = 6;
    node6->data = 7;

    Tree *tree = new Tree();
    tree->AddNode(0, 0, node1);
    tree->AddNode(0, 1, node2);
    tree->AddNode(1, 0, node3);
    tree->AddNode(1, 1, node4);
    tree->AddNode(2, 0, node5);
    tree->AddNode(2, 1, node6);

    //tree->PreorderTraversal();

    //tree->InorderTraversal();
    tree->InorderTraversal();

    tree->DeleteNode(6, NULL);
    tree->InorderTraversal();


}


int main(void)
{

    funtest1();

    system("pause");
    return 0;
}

Tree.h

#ifndef TREE_H
#define TREE_H

#include"Node.h"

class Tree
{
public:
    Tree();
    ~Tree();
    Node*SearchNode(int nodeIndex);
    bool AddNode(int nodeIndex, int direction, Node*pNode);
    bool DeleteNode(int nodeIndex, Node*pNode);
    void PreorderTraversal();
    void InorderTraversal();
    void PostorderTraversal();

private:
    Node*m_pRoot;

};
#endif

Tree.cpp

#include"Tree.h"
#include<iostream>
Tree::Tree()
{
    m_pRoot = new Node();
}
Tree::~Tree()  //销毁整个节点,树就销毁了
{
    DeleteNode(0, NULL);

}
Node*Tree::SearchNode(int nodeIndex)
{
    return m_pRoot->SearchNode(nodeIndex);

}

bool Tree::AddNode(int nodeIndex, int direction, Node*pNode)
{
    Node*temp = SearchNode(nodeIndex);
    if (temp == NULL)
    {
        return false;
    }
    Node*node = new Node();
    if (NULL == node)
    {
        return false;
    }
    node->index = pNode->index;
    node->data = pNode->data;
    node->pParent = temp;
    if (direction == 0)
    {
        temp->pLChild = node;
    }
    if (direction == 1)
    {
        temp->pRChild = node;
    }
    return true;
}


bool Tree::DeleteNode(int nodeIndex, Node*pNode)
{
    Node*temp = SearchNode(nodeIndex);
    if (temp == NULL)
    {
        return false;
    }
    if (pNode != NULL)
    {
        pNode->data = temp->data;
    }
    temp->DeleteNode();
    return true;
}


void Tree::PreorderTraversal()
{
    m_pRoot->PreorderTraversal();

}
void Tree::InorderTraversal()
{
    m_pRoot->InorderTraversal();
}
void Tree::PostorderTraversal()
{
    m_pRoot->PostorderTraversal();
}

Node.h

#ifndef NODE_H
#define NODE_H

class Node
{
public:
    Node();
    Node*SearchNode(int nodeIndex);
    void DeleteNode();
    void PreorderTraversal();
    void InorderTraversal();
    void PostorderTraversal();
    int index;
    int data;
    Node*pLChild;
    Node*pRChild;
    Node*pParent;

};

#endif

Node.cpp

#include"Node.h"
#include<iostream>
using namespace std;
Node::Node()
{
    index = 0;
    data = 0;
    pLChild = NULL;
    pRChild = NULL;
    pParent = NULL;
}
Node*Node::SearchNode(int nodeIndex)
{
    if (this->index == nodeIndex)
    {
        return this;
    }

    Node*temp = NULL;
    if (this->pLChild != NULL)
    {
        if (this->pLChild->index == nodeIndex)
        {
            return this->pLChild;
        }
        else
        {
            temp=this->pLChild->SearchNode(nodeIndex);
            if (temp != NULL)
            {
                return temp;
            }
        }

    }

    if (this->pRChild != NULL)
    {
        if (this->pRChild->index == nodeIndex)
        {
            return this->pRChild;
        }
        else
        {

            temp=this->pRChild->SearchNode(nodeIndex);
            if (temp != NULL)
            {
                return temp;
            }
        }
    }
    return NULL;
}
void Node::DeleteNode()
{
    if (this->pLChild != NULL)
    {
        this->pLChild->DeleteNode();
    }
    if (this->pRChild != NULL)
    {
        this->pRChild->DeleteNode();
    }
    if (this->pParent != NULL)
    {

        if (this->pParent->pLChild == this)
        {
            this->pParent->pLChild = NULL;
        }
        if (this->pParent->pRChild == this)
        {
            this->pParent->pRChild = NULL;
        }
    }
    delete this;
}


void Node::PreorderTraversal()
{

    cout << this->index << "  " << this->data << endl;
    if (this->pLChild != NULL)
    {
        this->pLChild->PreorderTraversal();
    }
    if (this->pRChild != NULL)
    {
        this->pRChild->PreorderTraversal();

    }
}

void Node::InorderTraversal()
{
    if (this->pLChild != NULL)
    {
        this->pLChild->InorderTraversal();
    }
    cout << this->index << "  " << this->data << endl;

    if (this->pRChild != NULL)
    {
        this->pRChild->InorderTraversal();

    }
}
void Node::PostorderTraversal()
{

    if (this->pLChild != NULL)
    {
        this->pLChild->PostorderTraversal();
    }

    if (this->pRChild != NULL)
    {
        this->pRChild->PostorderTraversal();

    }
    cout << this->index << "  " << this->data << endl;

}

总结:数据结构还是相当简单的,首先应该掌握的就是他的结构,他的每个单元的基本组成,之间相互关系。其次就是掌握递归,找出递归基,将问题规模逐渐缩小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值