这是二叉树结构图:
可以看出每个节点都有一个数据域、一个索引、三个节点指针:父节点指针、左孩子结点指针、右孩子结点指针。这样才能根连着枝再连着叶
父节点相当于单链表的指针,把根和非终端节点连接在一起。
demo.cpp
/**************************************/
/*
二叉树:链表实现
Tree(); //创建树
~Tree(); //销毁树
Node *SerachNode(int nodeIndex); //搜索节点
bool AddNode(int nodeIndex,int direction,Node*pNode); //添加节点
bool DeleteNode(int nodeIndex,Node*PNode); //删除节点
void PreorderTraverse(); //前序遍历
void InorderTraverse(); //中序遍历
void PostorderTraverse(); //后序遍历
节点要素:索引 数据 左孩子指针 右孩子指针
(0)
5(1) 8(2)
2(3 ) 6(4) 9(5) 7(6)
前:0134256
中:3140526
后:3415620
*/
/***************************************/
#include<windows.h>
#include"Tree.h"
void funtest1()
{
Node*node1 = new Node();
node1->index = 1;
node1->data = 5;
Node*node2 = new Node();
node2->index = 2;
node2->data = 8;
Node*node3 = new Node();
node3->index = 3;
node3->data = 2;
Node*node4 = new Node();
node4->index = 4;
node4->data = 6;
Node*node5 = new Node();
node5->index = 5;
node5->data = 9;
Node*node6 = new Node();
node6->index = 6;
node6->data = 7;
Tree *tree = new Tree();
tree->AddNode(0, 0, node1);
tree->AddNode(0, 1, node2);
tree->AddNode(1, 0, node3);
tree->AddNode(1, 1, node4);
tree->AddNode(2, 0, node5);
tree->AddNode(2, 1, node6);
//tree->PreorderTraversal();
//tree->InorderTraversal();
tree->InorderTraversal();
tree->DeleteNode(6, NULL);
tree->InorderTraversal();
}
int main(void)
{
funtest1();
system("pause");
return 0;
}
Tree.h
#ifndef TREE_H
#define TREE_H
#include"Node.h"
class Tree
{
public:
Tree();
~Tree();
Node*SearchNode(int nodeIndex);
bool AddNode(int nodeIndex, int direction, Node*pNode);
bool DeleteNode(int nodeIndex, Node*pNode);
void PreorderTraversal();
void InorderTraversal();
void PostorderTraversal();
private:
Node*m_pRoot;
};
#endif
Tree.cpp
#include"Tree.h"
#include<iostream>
Tree::Tree()
{
m_pRoot = new Node();
}
Tree::~Tree() //销毁整个节点,树就销毁了
{
DeleteNode(0, NULL);
}
Node*Tree::SearchNode(int nodeIndex)
{
return m_pRoot->SearchNode(nodeIndex);
}
bool Tree::AddNode(int nodeIndex, int direction, Node*pNode)
{
Node*temp = SearchNode(nodeIndex);
if (temp == NULL)
{
return false;
}
Node*node = new Node();
if (NULL == node)
{
return false;
}
node->index = pNode->index;
node->data = pNode->data;
node->pParent = temp;
if (direction == 0)
{
temp->pLChild = node;
}
if (direction == 1)
{
temp->pRChild = node;
}
return true;
}
bool Tree::DeleteNode(int nodeIndex, Node*pNode)
{
Node*temp = SearchNode(nodeIndex);
if (temp == NULL)
{
return false;
}
if (pNode != NULL)
{
pNode->data = temp->data;
}
temp->DeleteNode();
return true;
}
void Tree::PreorderTraversal()
{
m_pRoot->PreorderTraversal();
}
void Tree::InorderTraversal()
{
m_pRoot->InorderTraversal();
}
void Tree::PostorderTraversal()
{
m_pRoot->PostorderTraversal();
}
Node.h
#ifndef NODE_H
#define NODE_H
class Node
{
public:
Node();
Node*SearchNode(int nodeIndex);
void DeleteNode();
void PreorderTraversal();
void InorderTraversal();
void PostorderTraversal();
int index;
int data;
Node*pLChild;
Node*pRChild;
Node*pParent;
};
#endif
Node.cpp
#include"Node.h"
#include<iostream>
using namespace std;
Node::Node()
{
index = 0;
data = 0;
pLChild = NULL;
pRChild = NULL;
pParent = NULL;
}
Node*Node::SearchNode(int nodeIndex)
{
if (this->index == nodeIndex)
{
return this;
}
Node*temp = NULL;
if (this->pLChild != NULL)
{
if (this->pLChild->index == nodeIndex)
{
return this->pLChild;
}
else
{
temp=this->pLChild->SearchNode(nodeIndex);
if (temp != NULL)
{
return temp;
}
}
}
if (this->pRChild != NULL)
{
if (this->pRChild->index == nodeIndex)
{
return this->pRChild;
}
else
{
temp=this->pRChild->SearchNode(nodeIndex);
if (temp != NULL)
{
return temp;
}
}
}
return NULL;
}
void Node::DeleteNode()
{
if (this->pLChild != NULL)
{
this->pLChild->DeleteNode();
}
if (this->pRChild != NULL)
{
this->pRChild->DeleteNode();
}
if (this->pParent != NULL)
{
if (this->pParent->pLChild == this)
{
this->pParent->pLChild = NULL;
}
if (this->pParent->pRChild == this)
{
this->pParent->pRChild = NULL;
}
}
delete this;
}
void Node::PreorderTraversal()
{
cout << this->index << " " << this->data << endl;
if (this->pLChild != NULL)
{
this->pLChild->PreorderTraversal();
}
if (this->pRChild != NULL)
{
this->pRChild->PreorderTraversal();
}
}
void Node::InorderTraversal()
{
if (this->pLChild != NULL)
{
this->pLChild->InorderTraversal();
}
cout << this->index << " " << this->data << endl;
if (this->pRChild != NULL)
{
this->pRChild->InorderTraversal();
}
}
void Node::PostorderTraversal()
{
if (this->pLChild != NULL)
{
this->pLChild->PostorderTraversal();
}
if (this->pRChild != NULL)
{
this->pRChild->PostorderTraversal();
}
cout << this->index << " " << this->data << endl;
}
总结:数据结构还是相当简单的,首先应该掌握的就是他的结构,他的每个单元的基本组成,之间相互关系。其次就是掌握递归,找出递归基,将问题规模逐渐缩小。