二叉树题目汇总
二叉树的遍历(前序、中序、后序遍历和层次遍历)
重建二叉树
二叉树镜像
二叉树的深度
二叉树的宽度
判断二叉搜索树的后序遍历是否合法
判断一颗二叉树是否是平衡二叉树
判断一棵二叉树是否为完全二叉树
二叉树中和为某一值的路径
将二叉树搜索树转化为双向链表
求二叉树第 k 层结点个数
求二叉树两个结点的最低公共祖先结点
求二叉树中两个结点的最大距离
序列化和反序列化二叉树
- 普通树中的祖先结点到后代结点的路径
- 二叉树根结点到所有叶子节点的路径
普通树中的祖先结点到后代结点的路径
题目:
给出树的一个结点以及它的一个后代结点,输出从祖先结点到后代结点的路径。
如下面的树中,给出 0 和 7 两个结点,则输出0到7的路径 0, 1, 4, 7。0 / \ 1 2 / \ 3 4 / \ / | \ 5 6 7 8 9
package algorithm.foroffer.top50;
import org.junit.Test;
import java.util.ArrayList;
import java.util.List;
/**
* description:
*
* @author liyazhou
* @create 2017-06-05 21:23
*/
class TreeNode{
int value;
List<TreeNode> children = new ArrayList<>();
public TreeNode(int _value){ value = _value; }
public void addChild(TreeNode child){ children.add(child); }
public void addChildren(TreeNode... children){
for (TreeNode child : children) this.children.add(child);
}
}
public class Test50_2 {
/**
* 找根结点到目标结点的路径
* @param root 树的根结点
* @param target 树中的一个结点
* @param path 从根结点到目标结点的路径
* @return 如果存在从根结点到目标结点的路径,则返回;否则返回 null
*/
public boolean getNodePath(TreeNode root, TreeNode target, List<TreeNode> path){
// 添加当前结点
path.add(root);
System.out.print(root.value + "\t"); //0 1 3 5 6 4 7
if (root == target) return true;
boolean found = false;
// 处理孩子结点
for (TreeNode child : root.children){
found = getNodePath(child, target, path);
if (found) break;
}
// 以当前结点为根结点的子树中,不存在目标结点,则从路径中删除该结点
if (!found) path.remove(path.size()-1);
return found;
}
@Test
public void test(){
TreeNode[] nodes = generateTree();
TreeNode root = nodes[0];
TreeNode target1 = nodes[1];
List<TreeNode> path1 = new ArrayList<>();
getNodePath(root, target1, path1);
System.out.println();
for(TreeNode node : path1) System.out.print(node.value + "\t");
System.out.println();
}
/**
* 0
* / \
* 1 2
* / \
* 3 4
* / \ / | \
* 5 6 7 8 9
*
*/
private TreeNode[] generateTree() {
TreeNode node0 = new TreeNode(0);
TreeNode node1 = new TreeNode(1);
TreeNode node2 = new TreeNode(2);
TreeNode node3 = new TreeNode(3);
TreeNode node4 = new TreeNode(4);
TreeNode node5 = new TreeNode(5);
TreeNode node6 = new TreeNode(6);
TreeNode node7 = new TreeNode(7);
TreeNode node8 = new TreeNode(8);
TreeNode node9 = new TreeNode(9);
node0.addChildren(node1, node2);
node1.addChildren(node3, node4);
node3.addChildren(node5, node6);
node4.addChildren(node7, node8, node9);
return new TreeNode[]{node0, node7};
}
}
二叉树根结点到所有叶子节点的路径
package ac.leetcode.tree;
import org.junit.Test;
import java.util.LinkedList;
import java.util.List;
/**
* description:
*
* @author liyazhou
* @since 2017-07-02 10:45
*
* Binary Tree Paths
*
* 题目:
* Given a binary tree, return all root-to-leaf paths.
* For example, given the following binary tree:
* 1
* / \
* 2 3
* \
* 5
*
* All root-to-leaf paths are: ["1->2->5", "1->3"]
*/
public class BinaryTreePaths {
private static class BinTreeNode{
int value;
BinTreeNode left;
BinTreeNode right;
public BinTreeNode (int _value){ value = _value; }
public void setChildren(BinTreeNode _left, BinTreeNode _right){
left = _left;
right = _right;
}
}
public List<String> binaryTreePaths(BinTreeNode root){
List<String> paths = new LinkedList<>();
if (root == null) return paths; // if root == null, return []
String path = "";
binaryTreePaths(root, paths, path);
return paths;
}
private void binaryTreePaths(BinTreeNode root, List<String> paths, String path) {
if (root == null) return;
// 叶子结点,路径中的末尾结点,是专有的
if (root.left == null && root.right == null){
if ("".equals(path)) path += root.value;
else path += "->" + root.value;
paths.add(path);
return;
}
// 根结点到当前结点的路径,为其左右子结点公有的路径
if ("".equals(path)) path += root.value;
else path += "->"+root.value;
binaryTreePaths(root.left, paths, path);
binaryTreePaths(root.right, paths, path);
}
@Test
public void test(){
BinTreeNode node1 = new BinTreeNode(1);
BinTreeNode node2 = new BinTreeNode(2);
BinTreeNode node3 = new BinTreeNode(3);
BinTreeNode node5 = new BinTreeNode(5);
node1.setChildren(node2, node3);
node2.setChildren(null, node5);
List<String> paths = binaryTreePaths(node1);
for (String path : paths)
System.out.println(path);
}
}