思路:这道是一道比较简单的树形dp题。各员工与其直接上司直接连边然后建树即可
之后,用f[root]表示以root为根的树,选择root所得到的最大快乐度
而g[root]则表示以root为根的树,不选择root所得到的最大快乐度
由于员工与其直接上司在一个派对内同时出席,所以可得f[root]=v[root]+sum(g[child]),g[root]=max(sum(max(f[child],g[child])))
(我的程序中v[root]那里写成max(v[root],0),因为v[root]为负的话可以看成假装选择root实际上不选,这样更划算)
代码如下:
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Iterator;
import java.util.StringTokenizer;
import java.util.Vector;
class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
static void init(InputStream input) {
reader = new BufferedReader(new InputStreamReader(input));
tokenizer = new StringTokenizer("");
}
static String next() throws IOException {
while (!tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
}
public class Main {
/**
* @param args
*/
static int n, l, k, ans;
static int v[], in[], f[], g[];
static Vector<Integer> vector[];
private static int getmax(int a, int b) {
return a > b ? a : b;
}
private static void buildTree(int root) {
Iterator<Integer> iterator = vector[root].iterator();
int node, sum1 = 0, sum2 = 0;
sum1 = getmax(v[root], 0);
while (iterator.hasNext()) {
node = iterator.next();
buildTree(node);
sum1 = sum1 + g[node];
sum2 = sum2 + getmax(f[node], g[node]);
}
f[root] = getmax(f[root], sum1);
g[root] = sum2;
}
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
Reader.init(System.in);
n = Reader.nextInt();
v = new int[n + 1];
for (int i = 1; i <= n; i++)
v[i] = Reader.nextInt();
vector = new Vector[n + 1];
for (int i = 1; i <= n; i++)
vector[i] = new Vector<Integer>();
l = Reader.nextInt();
k = Reader.nextInt();
in = new int[n + 1];
while (l != 0) {
in[l]++;
vector[k].add(l);
l = Reader.nextInt();
k = Reader.nextInt();
}
f = new int[n + 1];
g = new int[n + 1];
ans = 0;
for (int i = 1; i <= n; i++)
if (in[i] == 0) {
buildTree(i);
ans = ans + getmax(f[i], g[i]);
}
System.out.println(ans);
}
}