H264--4--H264编码

本文深入解析了H264编码数据流的两种打包方式及其原理,详细分析了NAL数据流的组成,并对一段具体的H264编码数据流进行了逐层深入的解析,包括从开始码、NAL头到RBSP的解析过程,以及如何识别并处理不同的NAL单元类型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


-----------------------------------

编码器输出格式

----------------------------------

        总的来说H264的码流的打包方式有两种,一种为annex-b byte stream format的格式,这个是绝大部分编码器的默认输出格式,就是每个帧的开头的3~4个字节是H264的start_code,0x00000001或者0x000001。
        另一种是原始的NAL打包格式,就是开始的若干字节(1,2,4字节)是NAL的长度,而不是start_code,此时必须借助某个全局的数据来获得编码器的profile,level,PPS,SPS等信息才可以解码。

 

          @之前还疑惑过PPS 和SPS是哪里来的,答案是编码器给出的。

 

------------------------------

编码数据流分析

------------------------------

        首先明确一下,NAL数据流的组成:开始码+NAL头(forbidden_bit+nal_ref+nal_type)+RBSP

下面对一段H264编码数据流进行分析。

 

00 00 00 01 67 42 00 1E 99 A0 B1 31 00 00 00 01

H264的数据流分为两种,一种是NAL UNIT stream(RTP),一种是 bits stream,

两者可以互相转换。我们分析的这个是 bit stream,根据AnnexB

00 00 00 01 67 42 00 1E 99 A0 B1 31 是 一个NAL,在两个00 00 00 01之间

0110 0111 0100 0010 0000 0000 0001 1110 1001 1001 1010 0000 1011 0001 0011 0001

forbidden_zero_bit(1)= 0//网络传输正确

nal_ref_idc(2)= 11//参考值为3

nal_unit_type(5) = 0 0111:seq_parameter_set_rbsp( )//7,序列参数集

说明这个NALU的RBSP里装的是SPS数据 ,所以 processSPS

profile_idc(8):42:0100 0010

constraint_set0_flag(1):0

constraint_set1_flag(1):0

constraint_set2_flag(1):0

constraint_set3_flag(1):0

reserved_zero_4bits(4):0

level_idc(8):1E

seq_parameter_set_id(UE(V)):

ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor is specified in subclause9.1

uvlC: 1001:根据Table9.1 , value= 0,只占1bit.

根据profile_idc忽略掉一部分。

log2_max_frame_num_minus4(ue(v): 001 1001,len = 5,value= 5

pic_order_cnt_type(ue(v)):01 1010,len = 3,value = 2

根据pic_order_cnt_type忽略几个参数

num_ref_frames(ue):010,len = 3,value = 1

0000 1011 0001 0011 0001

gaps_in_frame_num_value_allowed_flag(1) = 0

pic_width_in_mbs_minus1(ue):000 1011 ,len = 7,value = 10;

pic_height_in_map_units_minus1(ue):0001 001,len = 7,value = 8

frame_mbs_only_flag(1) = 1

忽略1

direct_8x8_inference_flag(1):0

忽略

vui_parameters_present_flag(1):0

忽略

NALU结束

 

68 CE 38 80 00 00 00 01

0110 1000

forbidden_zero_bit(1)= 0

nal_ref_idc(2)= 11

nal_unit_type(5) =01000:pic_parameter_set_rbsp( ),7.3.2.2//8图像参数集

1100

pic_parameter_set_id (ue)=0

seq_parameter_set_id(ue)=0

entropy_coding_mode_flag(1) :0,   重要的flag,0表示编码Exp-Golomb coded and CAVLC,1表示CABAC

pic_order_present_flag(1):0

1110

num_slice_groups_minus1(ue):0

忽略

num_ref_idx_l0_active_minus1(ue):0

num_ref_idx_l1_active_minus1(ue):0

weighted_pred_flag(1);0

0011 1000 1000 0000

weighted_bipred_idc(2):00

pic_init_qp_minus26 /* relative to 26 */(se):0

pic_init_qs_minus26 /* relative to 26 */(se):0

chroma_qp_index_offset(se):0

deblocking_filter_control_present_flag(1);0

constrained_intra_pred_flag(1):0

redundant_pic_cnt_present_flag(1):0

忽略

NALU结束

 

65 88 80 21 71 27 1B 88…….3888*16 byte

65:0110 0101

forbidden_zero_bit(1)= 0

nal_ref_idc(2)= 11

nal_unit_type(5) =0 0101:slice_layer_without_partitioning_rbsp( )//IDR帧

Slice

Slice_Header:

first_mb_in_slice(ue):0

slice_type(ue):000 1000 = 7

pic_parameter_set_id(ue) = 0

80 21:000 0000 0010 0001

frame_num(u(v): frame_num is used as an identifier for pictures and shall be represented by log2_max_frame_num_minus4 + 4 bits,9 bits = 0

忽略

if( nal_unit_type = = 5 ) //IDR frame

idr_pic_id(u(e)):0

忽略N多

ref_pic_list_reordering( ) 见7。3。3。1忽略,Islice,SI slice,B slice

nal_ref_idc  =11 所以dec_ref_pic_marking( )

       nal_unit_type = 5,所以

       no_output_of_prior_pics_flag(1):0

long_term_reference_flag(1):0

忽略

。。71 27

001 0111 0001 0010 0111

slice_qp_delta(se(v):001 01,4:-2

忽略

 

slice_data( ):7.3.4

对I-Slice:忽略N多

进入if( moreDataFlag ) { if( MbaffFrameFlag && ( CurrMbAddr % 2 = = 0 | |                ( CurrMbAddr % 2 = = 1 && prevMbSkipped ) ) )mb_field_decoding_flag

macroblock_layer( )}

mb_field_decoding_flag忽略

macroblock_layer( )

mb_type(ue(v):0

mb_pred( mb_type )

prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ](1bit,对babac是ae(v)):1

1 27:0001 0010 0111

prev_intra4x4_pred_mode_flag[ 1 ] : 0001,0,001

0010 0111

prev_intra4x4_pred_mode_flag[ 2 ] : 0010,0,010

prev_intra4x4_pred_mode_flag[ 3] : 0111,0,111

……16个

1b 88 00 3e cf.

intra_chroma_pred_mode(ue(v)) :最后的一个1bit:0

 

接下来是macroblock_layer的coded_block_pattern和run level,既系数

c0 06 ad a0 18

1100 0000 0000 0110 1010 0000 0001 1000

coded_block_pattern(me(v):0,根据T= 47,0x2f

mb_qp_delta(se(v):):0 len =1

residual( )见7.3.5.3

residual_block( LumaLevel[ i8x8 * 4 + i4x4 ], 16 )

coeff_token(ce(v): 00 0000 0000 0110 1

       nc = 0(left block and top block 相关的):

len: {   // 0702

      { 1, 6, 8, 9,10,11,13,13,13,14,14,15,15,16,16,16,16},

      { 0, 2, 6, 8, 9,10,11,13,13,14,14,15,15,15,16,16,16},

      { 0, 0, 3, 7, 8, 9,10,11,13,13,14,14,15,15,16,16,16},

      { 0, 0, 0, 5, 6, 7, 8, 9,10,11,13,14,14,15,15,16,16},

    },                                                

    {                                                  

      { 2, 6, 6, 7, 8, 8, 9,11,11,12,12,12,13,13,13,14,14},

      { 0, 2, 5, 6, 6, 7, 8, 9,11,11,12,12,13,13,14,14,14},

      { 0, 0, 3, 6, 6, 7, 8, 9,11,11,12,12,13,13,13,14,14},

      { 0, 0, 0, 4, 4, 5, 6, 6, 7, 9,11,11,12,13,13,13,14},

    },                                                

    {                                                 

      { 4, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9,10,10,10,10},

      { 0, 4, 5, 5, 5, 5, 6, 6, 7, 8, 8, 9, 9, 9,10,10,10},

      { 0, 0, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,10,10,10},

      { 0, 0, 0, 4, 4, 4, 4, 4, 5, 6, 7, 8, 8, 9,10,10,10},

    },

code:

      { 1, 5, 7, 7, 7, 7,15,11, 8,15,11,15,11,15,11, 7,4},

      { 0, 1, 4, 6, 6, 6, 6,14,10,14,10,14,10, 1,14,10,6},

      { 0, 0, 1, 5, 5, 5, 5, 5,13, 9,13, 9,13, 9,13, 9,5},

      { 0, 0, 0, 3, 3, 4, 4, 4, 4, 4,12,12, 8,12, 8,12,8},

    },

    {

      { 3,11, 7, 7, 7, 4, 7,15,11,15,11, 8,15,11, 7, 9,7},

      { 0, 2, 7,10, 6, 6, 6, 6,14,10,14,10,14,10,11, 8,6},

      { 0, 0, 3, 9, 5, 5, 5, 5,13, 9,13, 9,13, 9, 6,10,5},

      { 0, 0, 0, 5, 4, 6, 8, 4, 4, 4,12, 8,12,12, 8, 1,4},

    },

    {

      {15,15,11, 8,15,11, 9, 8,15,11,15,11, 8,13, 9, 5,1},

      { 0,14,15,12,10, 8,14,10,14,14,10,14,10, 7,12, 8,4},

      { 0, 0,13,14,11, 9,13, 9,13,10,13, 9,13, 9,11, 7,3},

      { 0, 0, 0,12,11,10, 9, 8,13,12,12,12, 8,12,10, 6,2},

    },

根据表查的:

code = 13,len = 15,i= 12,j=2

       所以numcoeff = 12,numtrailingones = 2

010 0000 0001 1000: totalzeros:根据numcoeff

 int lentab[TOTRUN_NUM][16] =

 {

   

    { 1,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9}, 

    { 3,3,3,3,3,4,4,4,4,5,5,6,6,6,6}, 

    { 4,3,3,3,4,4,3,3,4,5,5,6,5,6}, 

    { 5,3,4,4,3,3,3,4,3,4,5,5,5}, 

    { 4,4,4,3,3,3,3,3,4,5,4,5}, 

    { 6,5,3,3,3,3,3,3,4,3,6}, 

    { 6,5,3,3,3,2,3,4,3,6}, 

    { 6,4,5,3,2,2,3,3,6}, 

    { 6,6,4,2,2,3,2,5}, 

    { 5,5,3,2,2,2,4}, 

    { 4,4,3,3,1,3}, 

    { 4,4,2,1,3}, numcoeff开始

    { 3,3,1,2}, 

    { 2,2,1}, 

    { 1,1}, 

 };

 

 int codtab[TOTRUN_NUM][16] =

 {

    {1,3,2,3,2,3,2,3,2,3,2,3,2,3,2,1},

    {7,6,5,4,3,5,4,3,2,3,2,3,2,1,0},

    {5,7,6,5,4,3,4,3,2,3,2,1,1,0},

    {3,7,5,4,6,5,4,3,3,2,2,1,0},

    {5,4,3,7,6,5,4,3,2,1,1,0},

    {1,1,7,6,5,4,3,2,1,1,0},

    {1,1,5,4,3,3,2,1,1,0},

    {1,1,1,3,3,2,2,1,0},

    {1,0,1,3,2,1,1,1,},

    {1,0,1,3,2,1,1,},

    {0,1,1,2,1,3},

    {0,1,1,1,1}, numcoeff开始

    {0,1,1,1},

    {0,1,1},

    {0,1}, 

 };

Code = 1,len = 2,i=2,j = 0, totzeros = 2

Read run: 0 0000 0001 1000根据totzeros = 2

 int lentab[TOTRUN_NUM][16] =

 {

    {1,1},

    {1,2,2},

    {2,2,2,2},

    {2,2,2,3,3},

    {2,2,3,3,3,3},

    {2,3,3,3,3,3,3},

    {3,3,3,3,3,3,3,4,5,6,7,8,9,10,11},

 };

 

 int codtab[TOTRUN_NUM][16] =

 {

    {1,0},

    {1,1,0},

    {3,2,1,0},

    {3,2,1,1,0},

    {3,2,3,2,1,0},

    {3,0,1,3,2,5,4},

    {7,6,5,4,3,2,1,1,1,1,1,1,1,1,1},

Code = 1,len =1,I = 0,j = 0

 

0.1.1         Slice data syntax

 

slice_data( ) {

C

Descriptor

     if( entropy_coding_mode_flag )

 

 

         while( !byte_aligned( ) )

 

 

              cabac_alignment_one_bit

2

f(1)

     CurrMbAddr = first_mb_in_slice * ( 1 + MbaffFrameFlag )

 

 

     moreDataFlag = 1

 

 

     prevMbSkipped = 0

 

 

     do {

 

 

         if( slice_type != I && slice_type != SI )

 

 

              if( !entropy_coding_mode_flag ) {

 

 

                  mb_skip_run

2

ue(v)

                  prevMbSkipped = ( mb_skip_run > 0 )

 

 

                  for( i=0; i<mb_skip_run; i++ )

 

 

                       CurrMbAddr = NextMbAddress( CurrMbAddr )

 

 

                  moreDataFlag = more_rbsp_data( )

 

 

              } else {

 

 

                  mb_skip_flag

2

ae(v)

                  moreDataFlag = !mb_skip_flag

 

 

              }

 

 

         if( moreDataFlag ) {

 

 

              if( MbaffFrameFlag && ( CurrMbAddr % 2 = = 0 | | 

                  ( CurrMbAddr % 2 = = 1 && prevMbSkipped ) ) )

 

 

                  mb_field_decoding_flag

2

u(1) | ae(v)

              macroblock_layer( )

2 | 3 | 4

 

         }

 

 

         if( !entropy_coding_mode_flag )

 

 

              moreDataFlag = more_rbsp_data( )

 

 

         else {

 

 

              if( slice_type != I && slice_type != SI )

 

 

                  prevMbSkipped = mb_skip_flag

 

 

              if( MbaffFrameFlag && CurrMbAddr % 2 = = 0 )

 

 

                  moreDataFlag = 1

 

 

              else {

 

 

                  end_of_slice_flag

2

ae(v)

                  moreDataFlag = !end_of_slice_flag

 

 

              }

 

 

         }

 

 

         CurrMbAddr = NextMbAddress( CurrMbAddr )

 

 

     } while( moreDataFlag )

 

 

}

 

 

 

 

 

 

se(v) : CABAC正式介绍。根据Table 9 5 – coeff_token mapping to TotalCoeff( coeff_token ) and TrailingOnes( coeff_token )。

chroma_format_idc 无

 

 

 

Table 9‑1 – Bit strings with “prefix” and “suffix” bits and assignment to codeNum ranges (informative)

Bit string form

Range of codeNum

          1

0

        0 1 x0

1-2

      0 0 1 x1 x0

3-6

    0 0 0 1 x2 x1 x0

7-14

 0 0 0 0 1 x3 x2 x1 x0

15-30

0 0 0 0 0 1 x4 x3 x2 x1 x0

31-62

 

0.1.1.1     Slice layer without partitioning RBSP syntax

 

slice_layer_without_partitioning_rbsp( ) {

C

Descriptor

     slice_header( )

2

 

     slice_data( ) /* all categories of slice_data( ) syntax */

2 | 3 | 4

 

     rbsp_slice_trailing_bits( )

2

 

}

 

 

 

 

 

 

0.1.1.2     Sequence parameter set RBSP syntax

 

seq_parameter_set_rbsp( ) {

C

Descriptor

     profile_idc

0

u(8)

     constraint_set0_flag

0

u(1)

     constraint_set1_flag

0

u(1)

     constraint_set2_flag

0

u(1)

     constraint_set3_flag

0

u(1)

     reserved_zero_4bits /* equal to 0 */

0

u(4)

     level_idc

0

u(8)

     seq_parameter_set_id

0

ue(v)

     if( profile_idc = = 100 | | profile_idc = = 110 | |
          profile_idc = = 122 | | profile_idc = = 144 ) {

 

 

         chroma_format_idc

0

ue(v)

         if( chroma_format_idc = = 3 )

 

 

              residual_colour_transform_flag

0

u(1)

         bit_depth_luma_minus8

0

ue(v)

         bit_depth_chroma_minus8

0

ue(v)

         qpprime_y_zero_transform_bypass_flag

0

u(1)

         seq_scaling_matrix_present_flag

0

u(1)

         if( seq_scaling_matrix_present_flag )

 

 

              for( i = 0; i < 8; i++ ) {

 

 

                  seq_scaling_list_present_flag[ i]

0

u(1)

                   if( seq_scaling_list_present_flag[ i ] )

 

 

                       if( i < 6 )

 

 

                           scaling_list( ScalingList4x4[ i ], 16,
                                                UseDefaultScalingMatrix4x4Flag[ i ])

0

 

                       else

 

 

                           scaling_list( ScalingList8x8[ i – 6 ], 64,
                                                UseDefaultScalingMatrix8x8Flag[ i – 6 ] )

0

 

              }

 

 

     }

 

 

     log2_max_frame_num_minus4

0

ue(v)

     pic_order_cnt_type

0

ue(v)

     if( pic_order_cnt_type = = 0 )

 

 

         log2_max_pic_order_cnt_lsb_minus4

0

ue(v)

     else if( pic_order_cnt_type = = 1 ) {

 

 

         delta_pic_order_always_zero_flag

0

u(1)

         offset_for_non_ref_pic

0

se(v)

         offset_for_top_to_bottom_field

0

se(v)

         num_ref_frames_in_pic_order_cnt_cycle

0

ue(v)

         for( i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++ )

 

 

              offset_for_ref_frame[ i ]

0

se(v)

     }

 

 

     num_ref_frames

0

ue(v)

     gaps_in_frame_num_value_allowed_flag

0

u(1)

     pic_width_in_mbs_minus1

0

ue(v)

     pic_height_in_map_units_minus1

0

ue(v)

     frame_mbs_only_flag

0

u(1)

     if( !frame_mbs_only_flag )

 

 

         mb_adaptive_frame_field_flag

0

u(1)

     direct_8x8_inference_flag

0

u(1)

     frame_cropping_flag

0

u(1)

     if( frame_cropping_flag ) {

 

 

         frame_crop_left_offset

0

ue(v)

         frame_crop_right_offset

0

ue(v)

         frame_crop_top_offset

0

ue(v)

         frame_crop_bottom_offset

0

ue(v)

     }

 

 

     vui_parameters_present_flag

0

u(1)

     if( vui_parameters_present_flag )

 

 

         vui_parameters( )

0

 

     rbsp_trailing_bits( )

0

 

}

 

 

 

 

Table 7‑1 – NAL unit type codes

nal_unit_type

Content of NAL unit and RBSP syntax structure

C

0

Unspecified

 

1

Coded slice of a non-IDR picture
slice_layer_without_partitioning_rbsp( )

2, 3, 4

2

Coded slice data partition A 
slice_data_partition_a_layer_rbsp( )

2

3

Coded slice data partition B 
slice_data_partition_b_layer_rbsp( )

3

4

Coded slice data partition C 
slice_data_partition_c_layer_rbsp( )

4

5

Coded slice of an IDR picture
slice_layer_without_partitioning_rbsp( )

2, 3

6

Supplemental enhancement information (SEI)
sei_rbsp( )

5

7

Sequence parameter set
seq_parameter_set_rbsp( )

0

8

Picture parameter set
pic_parameter_set_rbsp( )

1

9

Access unit delimiter
access_unit_delimiter_rbsp( )

6

10

End of sequence
end_of_seq_rbsp( )

7

11

End of stream
end_of_stream_rbsp( )

8

12

Filler data
filler_data_rbsp( )

9

13

Sequence parameter set extension
seq_parameter_set_extension_rbsp( )

10

14..18

Reserved

 

19

Coded slice of an auxiliary coded picture without partitioning
slice_layer_without_partitioning_rbsp( )

2, 3, 4

20..23

Reserved

 

24..31

Unspecified

 

 

 

 

 

byte_stream_nal_unit( NumBytesInNALunit ) {

C

Descriptor

     while( next_bits( 24 ) != 0x000001 &&
                  next_bits( 32 ) != 0x00000001 )

 

 

         leading_zero_8bits /* equal to 0x00 */

 

f(8)

     if( next_bits( 24 ) != 0x000001 )

 

 

         zero_byte /* equal to 0x00 */

 

f(8)

     start_code_prefix_one_3bytes /* equal to 0x000001 */

 

f(24)

     nal_unit( NumBytesInNALunit)

 

 

     while( more_data_in_byte_stream( ) &&
                  next_bits( 24 ) != 0x000001 &&
                  next_bits( 32 ) != 0x00000001 )

 

 

         trailing_zero_8bits /* equal to 0x00 */

 

f(8)

}

 

 

 

 

 

 

0.1.1.3     Picture parameter set RBSP syntax

 

pic_parameter_set_rbsp( ) {

C

Descriptor

     pic_parameter_set_id

1

ue(v)

     seq_parameter_set_id

1

ue(v)

     entropy_coding_mode_flag

1

u(1)

     pic_order_present_flag

1

u(1)

     num_slice_groups_minus1

1

ue(v)

     if( num_slice_groups_minus1 > 0 ) {

 

 

         slice_group_map_type

1

ue(v)

         if( slice_group_map_type = = 0 )

 

 

              for( iGroup = 0; iGroup <= num_slice_groups_minus1; iGroup++ )

 

 

                  run_length_minus1[ iGroup ]

1

ue(v)

         else if( slice_group_map_type = = 2 )

 

 

              for( iGroup = 0; iGroup < num_slice_groups_minus1; iGroup++ ) {

 

 

                  top_left[ iGroup ]

1

ue(v)

                  bottom_right[ iGroup ]

1

ue(v)

              }

 

 

         else if( slice_group_map_type = = 3 | | 
                       slice_group_map_type = = 4 | | 
                       slice_group_map_type = = 5 ) {

 

 

              slice_group_change_direction_flag

1

u(1)

              slice_group_change_rate_minus1

1

ue(v)

         } else if( slice_group_map_type = = 6 ) {

 

 

              pic_size_in_map_units_minus1

1

ue(v)

              for( i = 0; i <= pic_size_in_map_units_minus1; i++ )

 

 

                  slice_group_id[ i ]

1

u(v)

         }

 

 

     }

 

 

     num_ref_idx_l0_active_minus1

1

ue(v)

     num_ref_idx_l1_active_minus1

1

ue(v)

     weighted_pred_flag

1

u(1)

     weighted_bipred_idc

1

u(2)

     pic_init_qp_minus26 /* relative to 26 */

1

se(v)

     pic_init_qs_minus26 /* relative to 26 */

1

se(v)

     chroma_qp_index_offset

1

se(v)

     deblocking_filter_control_present_flag

1

u(1)

     constrained_intra_pred_flag

1

u(1)

     redundant_pic_cnt_present_flag

1

u(1)

     if( more_rbsp_data( ) ) {

 

 

         transform_8x8_mode_flag

1

u(1)

         pic_scaling_matrix_present_flag

1

u(1)

         if( pic_scaling_matrix_present_flag )

 

 

              for( i = 0; i < 6 + 2* transform_8x8_mode_flag; i++ ) {

 

 

                  pic_scaling_list_present_flag[ i]

1

u(1)

                  if( pic_scaling_list_present_flag[ i ] )

 

 

                       if( i < 6 )

 

 

                           scaling_list( ScalingList4x4[ i ], 16,
                                                UseDefaultScalingMatrix4x4Flag[ i ] )

1

 

                       else

 

 

                           scaling_list( ScalingList8x8[ i – 6 ], 64,
                                                UseDefaultScalingMatrix8x8Flag[ i – 6 ] )

1

 

              }

 

 

         second_chroma_qp_index_offset

1

se(v)

     }

 

 

     rbsp_trailing_bits( )

1

 

}

 

 

 

0.1.2        Slice header syntax

 

slice_header( ) {

C

Descriptor

     first_mb_in_slice

2

ue(v)

     slice_type

2

ue(v)

     pic_parameter_set_id

2

ue(v)

     frame_num

2

u(v)

     if( !frame_mbs_only_flag ) {

 

 

         field_pic_flag

2

u(1)

         if( field_pic_flag )

 

 

              bottom_field_flag

2

u(1)

     }

 

 

     if( nal_unit_type = = 5 )

 

 

         idr_pic_id

2

ue(v)

     if( pic_order_cnt_type = = 0 ) {

 

 

         pic_order_cnt_lsb

2

u(v)

         if( pic_order_present_flag && !field_pic_flag )

 

 

              delta_pic_order_cnt_bottom

2

se(v)

     }

 

 

     if( pic_order_cnt_type = = 1 && !delta_pic_order_always_zero_flag ) {

 

 

         delta_pic_order_cnt[ 0 ]

2

se(v)

         if( pic_order_present_flag && !field_pic_flag )

 

 

              delta_pic_order_cnt[ 1 ]

2

se(v)

     }

 

 

     if( redundant_pic_cnt_present_flag )

 

 

         redundant_pic_cnt

2

ue(v)

     if( slice_type = = B )

 

 

         direct_spatial_mv_pred_flag

2

u(1)

     if( slice_type = = P | | slice_type = = SP | | slice_type = = B ) {

 

 

         num_ref_idx_active_override_flag

2

u(1)

         if( num_ref_idx_active_override_flag ) {

 

 

              num_ref_idx_l0_active_minus1

2

ue(v)

              if( slice_type  = = B )

 

 

                  num_ref_idx_l1_active_minus1

2

ue(v)

         }

 

 

     }

 

 

     ref_pic_list_reordering( )

2

 

     if( ( weighted_pred_flag && ( slice_type = = P | | slice_type = = SP ) ) | |
         ( weighted_bipred_idc = = 1 && slice_type = = B ) )

 

 

         pred_weight_table( )

2

 

     if( nal_ref_idc != 0 )

 

 

         dec_ref_pic_marking( )

2

 

     if( entropy_coding_mode_flag && slice_type != I && slice_type != SI )

 

 

         cabac_init_idc

2

ue(v)

     slice_qp_delta

2

se(v)

     if( slice_type  = = SP | | slice_type = = SI ) {

 

 

         if( slice_type = = SP )

 

 

              sp_for_switch_flag

2

u(1)

         slice_qs_delta

2

se(v)

     }

 

 

     if( deblocking_filter_control_present_flag ) {

 

 

         disable_deblocking_filter_idc

2

ue(v)

         if( disable_deblocking_filter_idc != 1 ) {

 

 

              slice_alpha_c0_offset_div2

2

se(v)

              slice_beta_offset_div2

2

se(v)

         }

 

 

     }

 

 

     if( num_slice_groups_minus1 > 0 &&
         slice_group_map_type >= 3 && slice_group_map_type <= 5)

 

 

         slice_group_change_cycle

2

u(v)

}

 

 

 

0.1.3        Slice data syntax

 

slice_data( ) {

C

Descriptor

     if( entropy_coding_mode_flag )

 

 

         while( !byte_aligned( ) )

 

 

              cabac_alignment_one_bit

2

f(1)

     CurrMbAddr = first_mb_in_slice * ( 1 + MbaffFrameFlag )

 

 

     moreDataFlag = 1

 

 

     prevMbSkipped = 0

 

 

     do {

 

 

         if( slice_type != I && slice_type != SI )

 

 

              if( !entropy_coding_mode_flag ) {

 

 

                  mb_skip_run

2

ue(v)

                  prevMbSkipped = ( mb_skip_run > 0 )

 

 

                  for( i=0; i<mb_skip_run; i++ )

 

 

                       CurrMbAddr = NextMbAddress( CurrMbAddr )

 

 

                  moreDataFlag = more_rbsp_data( )

 

 

              } else {

 

 

                  mb_skip_flag

2

ae(v)

                  moreDataFlag = !mb_skip_flag

 

 

              }

 

 

         if( moreDataFlag ) {

 

 

              if( MbaffFrameFlag && ( CurrMbAddr % 2 = = 0 | | 

                  ( CurrMbAddr % 2 = = 1 && prevMbSkipped ) ) )

 

 

                  mb_field_decoding_flag

2

u(1) | ae(v)

              macroblock_layer( )

2 | 3 | 4

 

         }

 

 

         if( !entropy_coding_mode_flag )

 

 

              moreDataFlag = more_rbsp_data( )

 

 

         else {

 

 

              if( slice_type != I && slice_type != SI )

 

 

                  prevMbSkipped = mb_skip_flag

 

 

              if( MbaffFrameFlag && CurrMbAddr % 2 = = 0 )

 

 

                  moreDataFlag = 1

 

 

              else {

 

 

                  end_of_slice_flag

2

ae(v)

                  moreDataFlag = !end_of_slice_flag

 

 

              }

 

 

         }

 

 

         CurrMbAddr = NextMbAddress( CurrMbAddr )

 

 

     } while( moreDataFlag )

 

 

}

 

 

The variable MbaffFrameFlag is derived as follows.

MbaffFrameFlag = ( mb_adaptive_frame_field_flag && !field_pic_flag )                          (7-22)

 

0.1.4        Macroblock layer syntax

 

macroblock_layer( ) {

C

Descriptor

     mb_type

2

ue(v) | ae(v)

     if( mb_type = = I_PCM ) {

 

 

         while( !byte_aligned( ) )

 

 

              pcm_alignment_zero_bit

2

f(1)

         for( i = 0; i < 256; i++ )

 

 

              pcm_sample_luma[ i ]

2

u(v)

         for( i = 0; i < 2 * MbWidthC * MbHeightC; i++ )

 

 

              pcm_sample_chroma[ i ]

2

u(v)

     } else {

 

 

         noSubMbPartSizeLessThan8x8Flag = 1

 

 

         if( mb_type != I_NxN &&

              MbPartPredMode( mb_type, 0 ) != Intra_16x16 &&

              NumMbPart( mb_type ) = = 4 ) {

 

 

              sub_mb_pred( mb_type )

2

 

              for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++ )

 

 

                  if( sub_mb_type[ mbPartIdx ] != B_Direct_8x8 ) {

 

 

                       if( NumSubMbPart( sub_mb_type[ mbPartIdx ] ) > 1 )

 

 

                           noSubMbPartSizeLessThan8x8Flag = 0

 

 

                  } else if( !direct_8x8_inference_flag )

 

 

                       noSubMbPartSizeLessThan8x8Flag = 0

 

 

         } else {

 

 

              if( transform_8x8_mode_flag && mb_type = = I_NxN )

 

 

                  transform_size_8x8_flag

2

u(1) | ae(v)

              mb_pred( mb_type )

2

 

         }

 

 

         if( MbPartPredMode( mb_type, 0 ) != Intra_16x16 ) {

 

 

              coded_block_pattern

2

me(v) | ae(v)

              if( CodedBlockPatternLuma > 0 &&

                   transform_8x8_mode_flag && mb_type != I_NxN &&

                   noSubMbPartSizeLessThan8x8Flag &&

                   ( mb_type != B_Direct_16x16 | | direct_8x8_inference_flag ) )

 

 

                  transform_size_8x8_flag

2

u(1) | ae(v)

         }

 

 

         if( CodedBlockPatternLuma > 0 | | CodedBlockPatternChroma > 0 | |
              MbPartPredMode( mb_type, 0 ) = = Intra_16x16 ) {

 

 

              mb_qp_delta

2

se(v) | ae(v)

              residual( )

3 | 4

 

         }

 

 

     }

 

 

}

 

 

 

0.1.4.1     Macroblock prediction syntax

 

mb_pred( mb_type ) {

C

Descriptor

     if( MbPartPredMode( mb_type, 0 ) = = Intra_4x4 | | 
         MbPartPredMode( mb_type, 0 ) = = Intra_8x8 | | 
         MbPartPredMode( mb_type, 0 ) = = Intra_16x16 ) {

 

 

         if( MbPartPredMode( mb_type, 0 ) = = Intra_4x4 )

 

 

              for( luma4x4BlkIdx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++ ) {

 

 

                  prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ]

2

u(1) | ae(v)

                  if( !prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ] )

 

 

                       rem_intra4x4_pred_mode[ luma4x4BlkIdx ]

2

u(3) | ae(v)

              }

 

 

         if( MbPartPredMode( mb_type, 0 ) = = Intra_8x8 )

 

 

              for( luma8x8BlkIdx=0; luma8x8BlkIdx<4; luma8x8BlkIdx++ ) {

 

 

                  prev_intra8x8_pred_mode_flag[ luma8x8BlkIdx ]

2

u(1) | ae(v)

                  if( !prev_intra8x8_pred_mode_flag[ luma8x8BlkIdx ] )

 

 

                       rem_intra8x8_pred_mode[ luma8x8BlkIdx ]

2

u(3) | ae(v)

              }

 

 

         if( chroma_format_idc != 0 )

 

 

              intra_chroma_pred_mode

2

ue(v) | ae(v)

     } else if( MbPartPredMode( mb_type, 0 ) != Direct ) {

 

 

         for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)

 

 

              if( ( num_ref_idx_l0_active_minus1 > 0 | |
                       mb_field_decoding_flag ) && 
                   MbPartPredMode( mb_type, mbPartIdx ) != Pred_L1 )

 

 

                  ref_idx_l0[ mbPartIdx ]

2

te(v) | ae(v)

         for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)

 

 

              if( ( num_ref_idx_l1_active_minus1 > 0 | |
                       mb_field_decoding_flag ) && 
                  MbPartPredMode( mb_type, mbPartIdx ) != Pred_L0 )

 

 

                  ref_idx_l1[ mbPartIdx ]

2

te(v) | ae(v)

         for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)

 

 

              if( MbPartPredMode ( mb_type, mbPartIdx ) != Pred_L1 )

 

 

                  for( compIdx = 0; compIdx < 2; compIdx++ )

 

 

                       mvd_l0[ mbPartIdx ][ 0 ][ compIdx ]

2

se(v) | ae(v)

         for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)

 

 

              if( MbPartPredMode( mb_type, mbPartIdx ) != Pred_L0 )

 

 

                  for( compIdx = 0; compIdx < 2; compIdx++ )

 

 

                       mvd_l1[ mbPartIdx ][ 0 ][ compIdx ]

2

se(v) | ae(v)

     }

 

 

}

 

 

 

0.1.4.2     Residual data syntax

 

residual( ) {

C

Descriptor

     if( !entropy_coding_mode_flag )

 

 

         residual_block = residual_block_cavlc

 

 

     else

 

 

         residual_block = residual_block_cabac

 

 

     if( MbPartPredMode( mb_type, 0 ) = = Intra_16x16 )

 

 

         residual_block( Intra16x16DCLevel, 16 )

3

 

     for( i8x8 = 0; i8x8 < 4; i8x8++ ) /* each luma 8x8 block */

 

 

         if( !transform_size_8x8_flag | | !entropy_coding_mode_flag )

 

 

              for( i4x4 = 0; i4x4 < 4; i4x4++ ) { /* each 4x4 sub-block of block */

 

 

                  if( CodedBlockPatternLuma & ( 1 << i8x8 ) )

 

 

                       if( MbPartPredMode( mb_type, 0 ) = = Intra_16x16 )

 

 

                           residual_block( Intra16x16ACLevel[ i8x8 * 4 + i4x4 ], 15 )

3

 

                       else

 

 

                           residual_block( LumaLevel[ i8x8 * 4 + i4x4 ], 16 )

3 | 4

 

                  else if( MbPartPredMode( mb_type, 0 ) = = Intra_16x16 )

 

 

                       for( i = 0; i < 15; i++ )

 

 

                           Intra16x16ACLevel[ i8x8 * 4 + i4x4 ][ i ] = 0

 

 

                  else

 

 

                       for( i = 0; i < 16; i++ )

 

 

                           LumaLevel[ i8x8 * 4 + i4x4 ][ i ] = 0

 

 

                  if( !entropy_coding_mode_flag && transform_size_8x8_flag )

 

 

                       for( i = 0; i < 16; i++ )

 

 

                           LumaLevel8x8[ i8x8 ][ 4 * i + i4x4 ] =
                                                     LumaLevel[ i8x8 * 4 + i4x4 ][ i ]

 

 

              }

 

 

         else if( CodedBlockPatternLuma & ( 1 << i8x8 ) )

 

 

              residual_block( LumaLevel8x8[ i8x8 ], 64 )

3 | 4

 

         else

 

 

              for( i = 0; i < 64; i++ )

 

 

                  LumaLevel8x8[ i8x8 ][ i ] = 0

 

 

     if( chroma_format_idc != 0 ) {

 

 

         NumC8x8 = 4 / ( SubWidthC * SubHeightC )

 

 

         for( iCbCr = 0; iCbCr < 2; iCbCr++ )

 

 

              if( CodedBlockPatternChroma & 3 ) /* chroma DC residual present */

 

 

                  residual_block( ChromaDCLevel[ iCbCr ], 4 * NumC8x8 )

3 | 4

 

              else

 

 

                  for( i = 0; i < 4 * NumC8x8; i++ )

 

 

                       ChromaDCLevel[ iCbCr ][ i ] = 0

 

 

         for( iCbCr = 0; iCbCr < 2; iCbCr++ )

 

 

              for( i8x8 = 0; i8x8 < NumC8x8; i8x8++ )

 

 

                  for( i4x4 = 0; i4x4 < 4; i4x4++ )

 

 

                       if( CodedBlockPatternChroma & 2 )
                                                             /* chroma AC residual present */

 

 

                           residual_block( ChromaACLevel[ iCbCr ][ i8x8*4+i4x4 ], 15)

3 | 4

 

                       else

 

 

                           for( i = 0; i < 15; i++ )

 

 

                                ChromaACLevel[ iCbCr ][ i8x8*4+i4x4 ][ i ] = 0

 

 

     }

 

 

 

 

residual_block_cavlc( coeffLevel, maxNumCoeff ) {

C

Descriptor

    for( i = 0; i < maxNumCoeff; i++ )

 

 

       coeffLevel[ i ] = 0

 

 

    coeff_token

3 | 4

ce(v)

    if( TotalCoeff( coeff_token ) > 0 ) {

 

 

       if( TotalCoeff( coeff_token ) > 10 && TrailingOnes( coeff_token ) < 3 )

 

 

           suffixLength = 1

 

 

       else

 

 

           suffixLength = 0

 

 

       for( i = 0; i < TotalCoeff( coeff_token ); i++ )

 

 

           if( i < TrailingOnes( coeff_token ) ) {

 

 

              trailing_ones_sign_flag

3 | 4

u(1)

              level[ i ] = 1 – 2 * trailing_ones_sign_flag

 

 

           } else {

 

 

              level_prefix

3 | 4

ce(v)

              levelCode = ( Min( 15, level_prefix ) << suffixLength )

 

 

              if( suffixLength > 0 | | level_prefix >= 14 ) {

 

 

                  level_suffix

3 | 4

u(v)

                  levelCode += level_suffix

 

 

              }

 

 

              if( level_prefix > = 15 && suffixLength = = 0 )

 

 

                  levelCode += 15

 

 

              if( level_prefix > = 16 )

 

 

                  levelCode += ( 1 << ( level_prefix – 3 ) ) – 4096

 

 

              if( i = = TrailingOnes( coeff_token ) && 
                   TrailingOnes( coeff_token ) < 3 )

 

 

                  levelCode += 2

 

 

              if( levelCode % 2 = = 0 )

 

 

                  level[ i ] = ( levelCode + 2 ) >> 1

 

 

              else

 

 

                  level[ i ] = ( –levelCode – 1 ) >> 1

 

 

              if( suffixLength = = 0 )

 

 

                  suffixLength = 1

 

 

              if( Abs( level[ i ] ) > ( 3 << ( suffixLength – 1 ) ) && 
                   suffixLength < 6 )

 

 

                  suffixLength++

 

 

           }

 

 

       if( TotalCoeff( coeff_token ) < maxNumCoeff ) {

 

 

           total_zeros

3 | 4

ce(v)

           zerosLeft = total_zeros

 

 

       } else

 

 

           zerosLeft = 0

 

 

       for( i = 0; i < TotalCoeff( coeff_token ) – 1; i++ ) {

 

 

           if( zerosLeft > 0 ) {

 

 

              run_before

3 | 4

ce(v)

              run[ i ] = run_before

 

 

           } else

 

 

              run[ i ] = 0

 

 

           zerosLeft = zerosLeft – run[ i ]

 

 

       }

 

 

       run[ TotalCoeff( coeff_token ) – 1 ] = zerosLeft

 

 

       coeffNum = ‑1

 

 

       for( i = TotalCoeff( coeff_token ) – 1; i >= 0; i-- ) {

 

 

           coeffNum += run[ i ] + 1

 

 

           coeffLevel[ coeffNum ] = level[ i ]

 

 

       }

 

 

    }

 

 

}

      

 

国际电信联盟(ITU)是从事电信领域工作的联合国专门机构。ITU-T(国际电信联盟电信标准化部门)是 国际电信联盟的常设机构,负责研究技术、操作和资费问题,并且为在世界范围内实现电信标准化,发表有关上 述研究项目的建议书。每四年一届的世界电信标准化全会(WTSA)确定ITU-T 各研究组的研究课题,再由各研 究组制定有关这些课题的建议书。WTSA第1号决议规定了批准建议书须遵循的程序。属ITU-T研究范围的某些 信息技术领域的必要标准,是与国际标准化组织(ISO)和国际电工技术委员会(IEC)合作制定的。 ISO(国际标准化组织)和IEC(国际电子技术委员会)共同构成了世界范围的标准专用系统。ISO 和IEC 的成 员实体参与国际标准的研究,是通过由各自组织机构设立的技术委员会来出来特定技术领域的活动。ISO和IEC 技术委员会在相互感兴趣的领域合作。其他国际组织,政府或者非政府性质的,可以通过与ISO 和IEC 发布联 合声明的方式合作。在信息通信领域,ISO和IEC成立了一个联合工作委员会ISO/IEC JTC 1。被联合技术委员 会接受的国际标准草案会在有投票权的国际实体中使用。作为国际标准的印刷本则需要至少75%的国际实体投 票通过。 本建议书|国际标准由ITU-T SG 16 Q.6(也称为VCEG,图像编码专家工作组)和ISO/IEC JTC 1/SC 29/WG 11(也称为MPEG,运动图像专家工作组)联合开发。VCEG 于1997 年成立,主要是保持ITU-T 图像编解码标 准的先进性和发展新的图像编解码标准,可以适用于会话和非会话业务。MPEG 于1988 年成立,主要是为了研 究运动图像和相关音频的编码标准,以适应不同应用,如数字存储媒体、分发和通信。 本建议书|国际标准的附件A到E都包含了规范性要求是本建议书|国际标准的组成部分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值