Word2vec 计算两个文本之间相似度

本文介绍如何在Python环境下使用gensim库计算两个文档间的Word Mover's Distance (WMD),并展示了必要的步骤及注意事项。文章还提供了一个示例,包括训练Word2Vec模型、去除停用词、计算WMD等。
部署运行你感兴趣的模型镜像

安装gensim 并且有pyemd,详情见下

 def wmdistance(self, document1, document2):
        """
        Compute the Word Mover's Distance between two documents. When using this
        code, please consider citing the following papers:

        .. Ofir Pele and Michael Werman, "A linear time histogram metric for improved SIFT matching".
        .. Ofir Pele and Michael Werman, "Fast and robust earth mover's distances".
        .. Matt Kusner et al. "From Word Embeddings To Document Distances".

        Note that if one of the documents have no words that exist in the
        Word2Vec vocab, `float('inf')` (i.e. infinity) will be returned.

        This method only works if `pyemd` is installed (can be installed via pip, but requires a C compiler).

        Example:
            >>> # Train word2vec model.
            >>> model = Word2Vec(sentences)

            >>> # Some sentences to test.
            >>> sentence_obama = 'Obama speaks to the media in Illinois'.lower().split()
            >>> sentence_president = 'The president greets the press in Chicago'.lower().split()

            >>> # Remove their stopwords.
            >>> from nltk.corpus import stopwords
            >>> stopwords = nltk.corpus.stopwords.words('english')
            >>> sentence_obama = [w for w in sentence_obama if w not in stopwords]
            >>> sentence_president = [w for w in sentence_president if w not in stopwords]

            >>> # Compute WMD.
            >>> distance = model.wmdistance(sentence_obama, sentence_president)
        """

        if not PYEMD_EXT:
            raise ImportError("Please install pyemd Python package to compute WMD.")

        # Remove out-of-vocabulary words.
        len_pre_oov1 = len(document1)
        len_pre_oov2 = len(document2)
        document1 = [token for token in document1 if token in self]
        document2 = [token for token in document2 if token in self]
        diff1 = len_pre_oov1 - len(document1)
        diff2 = len_pre_oov2 - len(document2)
        if diff1 > 0 or diff2 > 0:
            logger.info('Removed %d and %d OOV words from document 1 and 2 (respectively).',
                        diff1, diff2)

        if len(document1) == 0 or len(document2) == 0:
            logger.info('At least one of the documents had no words that were'
                        'in the vocabulary. Aborting (returning inf).')
            return float('inf')

        dictionary = Dictionary(documents=[document1, document2])
        vocab_len = len(dictionary)

        if vocab_len == 1:
            # Both documents are composed by a single unique token
            return 0.0

        # Sets for faster look-up.
        docset1 = set(document1)
        docset2 = set(document2)

        # Compute distance matrix.
        distance_matrix = zeros((vocab_len, vocab_len), dtype=double)
        for i, t1 in dictionary.items():
            for j, t2 in dictionary.items():
                if not t1 in docset1 or not t2 in docset2:
                    continue
                # Compute Euclidean distance between word vectors.
                distance_matrix[i, j] = sqrt(np_sum((self[t1] - self[t2])**2))

        if np_sum(distance_matrix) == 0.0:
            # `emd` gets stuck if the distance matrix contains only zeros.
            logger.info('The distance matrix is all zeros. Aborting (returning inf).')
            return float('inf')

        def nbow(document):
            d = zeros(vocab_len, dtype=double)
            nbow = dictionary.doc2bow(document)  # Word frequencies.
            doc_len = len(document)
            for idx, freq in nbow:
                d[idx] = freq / float(doc_len)  # Normalized word frequencies.
            return d

        # Compute nBOW representation of documents.
        d1 = nbow(document1)
        d2 = nbow(document2)

        # Compute WMD.
        return emd(d1, d2, distance_matrix)


您可能感兴趣的与本文相关的镜像

Python3.9

Python3.9

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值