width must be <= target - offset]

本文探讨了tf.image.pad_to_bounding_box函数的使用方法及其限制条件。特别是当加上offset后的长度超过指定宽度时,会触发错误。通过实际案例展示了如何正确设置参数以避免此类问题。

tf.image.pad_to_bounding_box(img,0,offset,32,image_width) #若加上offset后 长度超过image_width后,会报错[width must be <= target - offset]

/* * ACS - Automatic Channel Selection module * Copyright (c) 2011, Atheros Communications * Copyright (c) 2013, Qualcomm Atheros, Inc. * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "utils/includes.h" #include <math.h> #include "utils/common.h" #include "utils/list.h" #include "common/ieee802_11_defs.h" #include "common/hw_features_common.h" #include "common/wpa_ctrl.h" #include "drivers/driver.h" #include "hostapd.h" #include "ap_drv_ops.h" #include "ap_config.h" #include "hw_features.h" #include "acs.h" /* * Automatic Channel Selection * =========================== * * More info at * ------------ * http://wireless.kernel.org/en/users/Documentation/acs * * How to use * ---------- * - make sure you have CONFIG_ACS=y in hostapd's .config * - use channel=0 or channel=acs to enable ACS * * How does it work * ---------------- * 1. passive scans are used to collect survey data * (it is assumed that scan trigger collection of survey data in driver) * 2. interference factor is calculated for each channel * 3. ideal channel is picked depending on channel width by using adjacent * channel interference factors * * Known limitations * ----------------- * - Current implementation depends heavily on the amount of time willing to * spend gathering survey data during hostapd startup. Short traffic bursts * may be missed and a suboptimal channel may be picked. * - Ideal channel may end up overlapping a channel with 40 MHz intolerant BSS * * Todo / Ideas * ------------ * - implement other interference computation methods * - BSS/RSSI based * - spectral scan based * (should be possibly to hook this up with current ACS scans) * - add wpa_supplicant support (for P2P) * - collect a histogram of interference over time allowing more educated * guess about an ideal channel (perhaps CSA could be used to migrate AP to a * new "better" channel while running) * - include neighboring BSS scan to avoid conflicts with 40 MHz intolerant BSSs * when choosing the ideal channel * * Survey interference factor implementation details * ------------------------------------------------- * Generic interference_factor in struct hostapd_channel_data is used. * * The survey interference factor is defined as the ratio of the * observed busy time over the time we spent on the channel, * this value is then amplified by the observed noise floor on * the channel in comparison to the lowest noise floor observed * on the entire band. * * This corresponds to: * --- * (busy time - tx time) / (active time - tx time) * 2^(chan_nf + band_min_nf) * --- * * The coefficient of 2 reflects the way power in "far-field" * radiation decreases as the square of distance from the antenna [1]. * What this does is it decreases the observed busy time ratio if the * noise observed was low but increases it if the noise was high, * proportionally to the way "far field" radiation changes over * distance. * * If channel busy time is not available the fallback is to use channel RX time. * * Since noise floor is in dBm it is necessary to convert it into Watts so that * combined channel interference (e.g., HT40, which uses two channels) can be * calculated easily. * --- * (busy time - tx time) / (active time - tx time) * * 2^(10^(chan_nf/10) + 10^(band_min_nf/10)) * --- * * However to account for cases where busy/rx time is 0 (channel load is then * 0%) channel noise floor signal power is combined into the equation so a * channel with lower noise floor is preferred. The equation becomes: * --- * 10^(chan_nf/5) + (busy time - tx time) / (active time - tx time) * * 2^(10^(chan_nf/10) + 10^(band_min_nf/10)) * --- * * All this "interference factor" is purely subjective and only time * will tell how usable this is. By using the minimum noise floor we * remove any possible issues due to card calibration. The computation * of the interference factor then is dependent on what the card itself * picks up as the minimum noise, not an actual real possible card * noise value. * * Total interference computation details * -------------------------------------- * The above channel interference factor is calculated with no respect to * target operational bandwidth. * * To find an ideal channel the above data is combined by taking into account * the target operational bandwidth and selected band. E.g., on 2.4 GHz channels * overlap with 20 MHz bandwidth, but there is no overlap for 20 MHz bandwidth * on 5 GHz. * * Each valid and possible channel spec (i.e., channel + width) is taken and its * interference factor is computed by summing up interferences of each channel * it overlaps. The one with least total interference is picked up. * * Note: This implies base channel interference factor must be non-negative * allowing easy summing up. * * Example ACS analysis printout * ----------------------------- * * ACS: Trying survey-based ACS * ACS: Survey analysis for channel 1 (2412 MHz) * ACS: 1: min_nf=-113 interference_factor=0.0802469 nf=-113 time=162 busy=0 rx=13 * ACS: 2: min_nf=-113 interference_factor=0.0745342 nf=-113 time=161 busy=0 rx=12 * ACS: 3: min_nf=-113 interference_factor=0.0679012 nf=-113 time=162 busy=0 rx=11 * ACS: 4: min_nf=-113 interference_factor=0.0310559 nf=-113 time=161 busy=0 rx=5 * ACS: 5: min_nf=-113 interference_factor=0.0248447 nf=-113 time=161 busy=0 rx=4 * ACS: * interference factor average: 0.0557166 * ACS: Survey analysis for channel 2 (2417 MHz) * ACS: 1: min_nf=-113 interference_factor=0.0185185 nf=-113 time=162 busy=0 rx=3 * ACS: 2: min_nf=-113 interference_factor=0.0246914 nf=-113 time=162 busy=0 rx=4 * ACS: 3: min_nf=-113 interference_factor=0.037037 nf=-113 time=162 busy=0 rx=6 * ACS: 4: min_nf=-113 interference_factor=0.149068 nf=-113 time=161 busy=0 rx=24 * ACS: 5: min_nf=-113 interference_factor=0.0248447 nf=-113 time=161 busy=0 rx=4 * ACS: * interference factor average: 0.050832 * ACS: Survey analysis for channel 3 (2422 MHz) * ACS: 1: min_nf=-113 interference_factor=2.51189e-23 nf=-113 time=162 busy=0 rx=0 * ACS: 2: min_nf=-113 interference_factor=0.0185185 nf=-113 time=162 busy=0 rx=3 * ACS: 3: min_nf=-113 interference_factor=0.0186335 nf=-113 time=161 busy=0 rx=3 * ACS: 4: min_nf=-113 interference_factor=0.0186335 nf=-113 time=161 busy=0 rx=3 * ACS: 5: min_nf=-113 interference_factor=0.0186335 nf=-113 time=161 busy=0 rx=3 * ACS: * interference factor average: 0.0148838 * ACS: Survey analysis for channel 4 (2427 MHz) * ACS: 1: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0 * ACS: 2: min_nf=-114 interference_factor=0.0555556 nf=-114 time=162 busy=0 rx=9 * ACS: 3: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=161 busy=0 rx=0 * ACS: 4: min_nf=-114 interference_factor=0.0186335 nf=-114 time=161 busy=0 rx=3 * ACS: 5: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1 * ACS: * interference factor average: 0.0160801 * ACS: Survey analysis for channel 5 (2432 MHz) * ACS: 1: min_nf=-114 interference_factor=0.409938 nf=-113 time=161 busy=0 rx=66 * ACS: 2: min_nf=-114 interference_factor=0.0432099 nf=-113 time=162 busy=0 rx=7 * ACS: 3: min_nf=-114 interference_factor=0.0124224 nf=-113 time=161 busy=0 rx=2 * ACS: 4: min_nf=-114 interference_factor=0.677019 nf=-113 time=161 busy=0 rx=109 * ACS: 5: min_nf=-114 interference_factor=0.0186335 nf=-114 time=161 busy=0 rx=3 * ACS: * interference factor average: 0.232244 * ACS: Survey analysis for channel 6 (2437 MHz) * ACS: 1: min_nf=-113 interference_factor=0.552795 nf=-113 time=161 busy=0 rx=89 * ACS: 2: min_nf=-113 interference_factor=0.0807453 nf=-112 time=161 busy=0 rx=13 * ACS: 3: min_nf=-113 interference_factor=0.0310559 nf=-113 time=161 busy=0 rx=5 * ACS: 4: min_nf=-113 interference_factor=0.434783 nf=-112 time=161 busy=0 rx=70 * ACS: 5: min_nf=-113 interference_factor=0.0621118 nf=-113 time=161 busy=0 rx=10 * ACS: * interference factor average: 0.232298 * ACS: Survey analysis for channel 7 (2442 MHz) * ACS: 1: min_nf=-113 interference_factor=0.440994 nf=-112 time=161 busy=0 rx=71 * ACS: 2: min_nf=-113 interference_factor=0.385093 nf=-113 time=161 busy=0 rx=62 * ACS: 3: min_nf=-113 interference_factor=0.0372671 nf=-113 time=161 busy=0 rx=6 * ACS: 4: min_nf=-113 interference_factor=0.0372671 nf=-113 time=161 busy=0 rx=6 * ACS: 5: min_nf=-113 interference_factor=0.0745342 nf=-113 time=161 busy=0 rx=12 * ACS: * interference factor average: 0.195031 * ACS: Survey analysis for channel 8 (2447 MHz) * ACS: 1: min_nf=-114 interference_factor=0.0496894 nf=-112 time=161 busy=0 rx=8 * ACS: 2: min_nf=-114 interference_factor=0.0496894 nf=-114 time=161 busy=0 rx=8 * ACS: 3: min_nf=-114 interference_factor=0.0372671 nf=-113 time=161 busy=0 rx=6 * ACS: 4: min_nf=-114 interference_factor=0.12963 nf=-113 time=162 busy=0 rx=21 * ACS: 5: min_nf=-114 interference_factor=0.166667 nf=-114 time=162 busy=0 rx=27 * ACS: * interference factor average: 0.0865885 * ACS: Survey analysis for channel 9 (2452 MHz) * ACS: 1: min_nf=-114 interference_factor=0.0124224 nf=-114 time=161 busy=0 rx=2 * ACS: 2: min_nf=-114 interference_factor=0.0310559 nf=-114 time=161 busy=0 rx=5 * ACS: 3: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=161 busy=0 rx=0 * ACS: 4: min_nf=-114 interference_factor=0.00617284 nf=-114 time=162 busy=0 rx=1 * ACS: 5: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0 * ACS: * interference factor average: 0.00993022 * ACS: Survey analysis for channel 10 (2457 MHz) * ACS: 1: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1 * ACS: 2: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1 * ACS: 3: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1 * ACS: 4: min_nf=-114 interference_factor=0.0493827 nf=-114 time=162 busy=0 rx=8 * ACS: 5: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0 * ACS: * interference factor average: 0.0136033 * ACS: Survey analysis for channel 11 (2462 MHz) * ACS: 1: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=161 busy=0 rx=0 * ACS: 2: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=161 busy=0 rx=0 * ACS: 3: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=161 busy=0 rx=0 * ACS: 4: min_nf=-114 interference_factor=0.0432099 nf=-114 time=162 busy=0 rx=7 * ACS: 5: min_nf=-114 interference_factor=0.0925926 nf=-114 time=162 busy=0 rx=15 * ACS: * interference factor average: 0.0271605 * ACS: Survey analysis for channel 12 (2467 MHz) * ACS: 1: min_nf=-114 interference_factor=0.0621118 nf=-113 time=161 busy=0 rx=10 * ACS: 2: min_nf=-114 interference_factor=0.00621118 nf=-114 time=161 busy=0 rx=1 * ACS: 3: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=162 busy=0 rx=0 * ACS: 4: min_nf=-114 interference_factor=2.51189e-23 nf=-113 time=162 busy=0 rx=0 * ACS: 5: min_nf=-114 interference_factor=0.00617284 nf=-113 time=162 busy=0 rx=1 * ACS: * interference factor average: 0.0148992 * ACS: Survey analysis for channel 13 (2472 MHz) * ACS: 1: min_nf=-114 interference_factor=0.0745342 nf=-114 time=161 busy=0 rx=12 * ACS: 2: min_nf=-114 interference_factor=0.0555556 nf=-114 time=162 busy=0 rx=9 * ACS: 3: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0 * ACS: 4: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0 * ACS: 5: min_nf=-114 interference_factor=1.58489e-23 nf=-114 time=162 busy=0 rx=0 * ACS: * interference factor average: 0.0260179 * ACS: Survey analysis for selected bandwidth 20MHz * ACS: * channel 1: total interference = 0.121432 * ACS: * channel 2: total interference = 0.137512 * ACS: * channel 3: total interference = 0.369757 * ACS: * channel 4: total interference = 0.546338 * ACS: * channel 5: total interference = 0.690538 * ACS: * channel 6: total interference = 0.762242 * ACS: * channel 7: total interference = 0.756092 * ACS: * channel 8: total interference = 0.537451 * ACS: * channel 9: total interference = 0.332313 * ACS: * channel 10: total interference = 0.152182 * ACS: * channel 11: total interference = 0.0916111 * ACS: * channel 12: total interference = 0.0816809 * ACS: * channel 13: total interference = 0.0680776 * ACS: Ideal channel is 13 (2472 MHz) with total interference factor of 0.0680776 * * [1] http://en.wikipedia.org/wiki/Near_and_far_field */ static int acs_request_scan(struct hostapd_iface *iface); static int acs_survey_is_sufficient(struct freq_survey *survey); static void acs_clean_chan_surveys(struct hostapd_channel_data *chan) { struct freq_survey *survey, *tmp; if (dl_list_empty(&chan->survey_list)) return; dl_list_for_each_safe(survey, tmp, &chan->survey_list, struct freq_survey, list) { dl_list_del(&survey->list); os_free(survey); } } static void acs_cleanup_mode(struct hostapd_hw_modes *mode) { int i; struct hostapd_channel_data *chan; for (i = 0; i < mode->num_channels; i++) { chan = &mode->channels[i]; if (chan->flag & HOSTAPD_CHAN_SURVEY_LIST_INITIALIZED) acs_clean_chan_surveys(chan); dl_list_init(&chan->survey_list); chan->flag |= HOSTAPD_CHAN_SURVEY_LIST_INITIALIZED; chan->min_nf = 0; } } void acs_cleanup(struct hostapd_iface *iface) { int i; for (i = 0; i < iface->num_hw_features; i++) acs_cleanup_mode(&iface->hw_features[i]); iface->chans_surveyed = 0; iface->acs_num_completed_scans = 0; } static void acs_fail(struct hostapd_iface *iface) { wpa_printf(MSG_ERROR, "ACS: Failed to start"); acs_cleanup(iface); hostapd_disable_iface(iface); } static long double acs_survey_interference_factor(struct freq_survey *survey, s8 min_nf) { long double factor, busy, total; if (survey->filled & SURVEY_HAS_CHAN_TIME_BUSY) busy = survey->channel_time_busy; else if (survey->filled & SURVEY_HAS_CHAN_TIME_RX) busy = survey->channel_time_rx; else { wpa_printf(MSG_ERROR, "ACS: Survey data missing"); return 0; } total = survey->channel_time; if (survey->filled & SURVEY_HAS_CHAN_TIME_TX) { busy -= survey->channel_time_tx; total -= survey->channel_time_tx; } /* TODO: figure out the best multiplier for noise floor base */ factor = pow(10, survey->nf / 5.0L) + (total ? (busy / total) : 0) * pow(2, pow(10, (long double) survey->nf / 10.0L) - pow(10, (long double) min_nf / 10.0L)); return factor; } static void acs_survey_chan_interference_factor(struct hostapd_iface *iface, struct hostapd_channel_data *chan) { struct freq_survey *survey; unsigned int i = 0; long double int_factor = 0; unsigned count = 0; if (dl_list_empty(&chan->survey_list) || (chan->flag & HOSTAPD_CHAN_DISABLED)) return; chan->interference_factor = 0; dl_list_for_each(survey, &chan->survey_list, struct freq_survey, list) { i++; if (!acs_survey_is_sufficient(survey)) { wpa_printf(MSG_DEBUG, "ACS: %d: insufficient data", i); continue; } count++; int_factor = acs_survey_interference_factor(survey, iface->lowest_nf); chan->interference_factor += int_factor; wpa_printf(MSG_DEBUG, "ACS: %d: min_nf=%d interference_factor=%Lg nf=%d time=%lu busy=%lu rx=%lu", i, chan->min_nf, int_factor, survey->nf, (unsigned long) survey->channel_time, (unsigned long) survey->channel_time_busy, (unsigned long) survey->channel_time_rx); } if (count) chan->interference_factor /= count; } static int acs_usable_bw40_chan(const struct hostapd_channel_data *chan) { const int allowed[] = { 5180, 5220, 5260, 5300, 5500, 5540, 5580, 5620, 5660, 5745, 5785, 4920, 4960, 5955, 5995, 6035, 6075, 6115, 6155, 6195, 6235, 6275, 6315, 6355, 6395, 6435, 6475, 6515, 6555, 6595, 6635, 6675, 6715, 6755, 6795, 6835, 6875, 6915, 6955, 6995, 7035, 7075 }; unsigned int i; for (i = 0; i < ARRAY_SIZE(allowed); i++) if (chan->freq == allowed[i]) return 1; return 0; } static int acs_usable_bw80_chan(const struct hostapd_channel_data *chan) { const int allowed[] = { 5180, 5260, 5500, 5580, 5660, 5745, 5955, 6035, 6115, 6195, 6275, 6355, 6435, 6515, 6595, 6675, 6755, 6835, 6915, 6995 }; unsigned int i; for (i = 0; i < ARRAY_SIZE(allowed); i++) if (chan->freq == allowed[i]) return 1; return 0; } static int acs_usable_bw160_chan(const struct hostapd_channel_data *chan) { const int allowed[] = { 5180, 5500, 5955, 6115, 6275, 6435, 6595, 6755, 6915 }; unsigned int i; for (i = 0; i < ARRAY_SIZE(allowed); i++) if (chan->freq == allowed[i]) return 1; return 0; } static int acs_survey_is_sufficient(struct freq_survey *survey) { if (!(survey->filled & SURVEY_HAS_NF)) { wpa_printf(MSG_INFO, "ACS: Survey is missing noise floor"); return 0; } if (!(survey->filled & SURVEY_HAS_CHAN_TIME)) { wpa_printf(MSG_INFO, "ACS: Survey is missing channel time"); return 0; } if (!(survey->filled & SURVEY_HAS_CHAN_TIME_BUSY) && !(survey->filled & SURVEY_HAS_CHAN_TIME_RX)) { wpa_printf(MSG_INFO, "ACS: Survey is missing RX and busy time (at least one is required)"); return 0; } return 1; } static int acs_survey_list_is_sufficient(struct hostapd_channel_data *chan) { struct freq_survey *survey; int ret = -1; dl_list_for_each(survey, &chan->survey_list, struct freq_survey, list) { if (acs_survey_is_sufficient(survey)) { ret = 1; break; } ret = 0; } if (ret == -1) ret = 1; /* no survey list entries */ if (!ret) { wpa_printf(MSG_INFO, "ACS: Channel %d has insufficient survey data", chan->chan); } return ret; } static int acs_surveys_are_sufficient_mode(struct hostapd_hw_modes *mode) { int i; struct hostapd_channel_data *chan; for (i = 0; i < mode->num_channels; i++) { chan = &mode->channels[i]; if (!(chan->flag & HOSTAPD_CHAN_DISABLED) && acs_survey_list_is_sufficient(chan)) return 1; } return 0; } static int acs_surveys_are_sufficient(struct hostapd_iface *iface) { int i; struct hostapd_hw_modes *mode; for (i = 0; i < iface->num_hw_features; i++) { mode = &iface->hw_features[i]; if (!hostapd_hw_skip_mode(iface, mode) && acs_surveys_are_sufficient_mode(mode)) return 1; } return 0; } static int acs_usable_chan(struct hostapd_channel_data *chan) { return !dl_list_empty(&chan->survey_list) && !(chan->flag & HOSTAPD_CHAN_DISABLED) && acs_survey_list_is_sufficient(chan); } static int is_in_chanlist(struct hostapd_iface *iface, struct hostapd_channel_data *chan) { if (!iface->conf->acs_ch_list.num) return 1; return freq_range_list_includes(&iface->conf->acs_ch_list, chan->chan); } static int is_in_freqlist(struct hostapd_iface *iface, struct hostapd_channel_data *chan) { if (!iface->conf->acs_freq_list.num) return 1; return freq_range_list_includes(&iface->conf->acs_freq_list, chan->freq); } static void acs_survey_mode_interference_factor( struct hostapd_iface *iface, struct hostapd_hw_modes *mode) { int i; struct hostapd_channel_data *chan; for (i = 0; i < mode->num_channels; i++) { chan = &mode->channels[i]; if (!acs_usable_chan(chan)) continue; if (!is_in_chanlist(iface, chan)) continue; if (!is_in_freqlist(iface, chan)) continue; if (chan->max_tx_power < iface->conf->min_tx_power) continue; wpa_printf(MSG_DEBUG, "ACS: Survey analysis for channel %d (%d MHz)", chan->chan, chan->freq); acs_survey_chan_interference_factor(iface, chan); wpa_printf(MSG_DEBUG, "ACS: * interference factor average: %Lg", chan->interference_factor); } } static void acs_survey_all_chans_interference_factor( struct hostapd_iface *iface) { int i; struct hostapd_hw_modes *mode; for (i = 0; i < iface->num_hw_features; i++) { mode = &iface->hw_features[i]; if (!hostapd_hw_skip_mode(iface, mode)) acs_survey_mode_interference_factor(iface, mode); } } static struct hostapd_channel_data * acs_find_chan_mode(struct hostapd_hw_modes *mode, int freq) { struct hostapd_channel_data *chan; int i; for (i = 0; i < mode->num_channels; i++) { chan = &mode->channels[i]; if (chan->flag & HOSTAPD_CHAN_DISABLED) continue; if (chan->freq == freq) return chan; } return NULL; } static struct hostapd_channel_data * acs_find_chan(struct hostapd_iface *iface, int freq) { int i; struct hostapd_hw_modes *mode; struct hostapd_channel_data *chan; for (i = 0; i < iface->num_hw_features; i++) { mode = &iface->hw_features[i]; if (!hostapd_hw_skip_mode(iface, mode)) { chan = acs_find_chan_mode(mode, freq); if (chan) return chan; } } return NULL; } static int is_24ghz_mode(enum hostapd_hw_mode mode) { return mode == HOSTAPD_MODE_IEEE80211B || mode == HOSTAPD_MODE_IEEE80211G; } static int is_common_24ghz_chan(int chan) { return chan == 1 || chan == 6 || chan == 11; } #ifndef ACS_ADJ_WEIGHT #define ACS_ADJ_WEIGHT 0.85 #endif /* ACS_ADJ_WEIGHT */ #ifndef ACS_NEXT_ADJ_WEIGHT #define ACS_NEXT_ADJ_WEIGHT 0.55 #endif /* ACS_NEXT_ADJ_WEIGHT */ #ifndef ACS_24GHZ_PREFER_1_6_11 /* * Select commonly used channels 1, 6, 11 by default even if a neighboring * channel has a smaller interference factor as long as it is not better by more * than this multiplier. */ #define ACS_24GHZ_PREFER_1_6_11 0.8 #endif /* ACS_24GHZ_PREFER_1_6_11 */ static void acs_find_ideal_chan_mode(struct hostapd_iface *iface, struct hostapd_hw_modes *mode, int n_chans, u32 bw, struct hostapd_channel_data **rand_chan, struct hostapd_channel_data **ideal_chan, long double *ideal_factor) { struct hostapd_channel_data *chan, *adj_chan = NULL; long double factor; int i, j; unsigned int k; for (i = 0; i < mode->num_channels; i++) { double total_weight; struct acs_bias *bias, tmp_bias; chan = &mode->channels[i]; /* Since in the current ACS implementation the first channel is * always a primary channel, skip channels not available as * primary until more sophisticated channel selection is * implemented. */ if (!chan_pri_allowed(chan)) continue; if (!is_in_chanlist(iface, chan)) continue; if (!is_in_freqlist(iface, chan)) continue; if (chan->max_tx_power < iface->conf->min_tx_power) continue; if (!chan_bw_allowed(chan, bw, 1, 1)) { wpa_printf(MSG_DEBUG, "ACS: Channel %d: BW %u is not supported", chan->chan, bw); continue; } /* HT40 on 5 GHz has a limited set of primary channels as per * 11n Annex J */ if (mode->mode == HOSTAPD_MODE_IEEE80211A && ((iface->conf->ieee80211n && iface->conf->secondary_channel) || is_6ghz_freq(chan->freq)) && !acs_usable_bw40_chan(chan)) { wpa_printf(MSG_DEBUG, "ACS: Channel %d: not allowed as primary channel for 40 MHz bandwidth", chan->chan); continue; } if (mode->mode == HOSTAPD_MODE_IEEE80211A && (iface->conf->ieee80211ac || iface->conf->ieee80211ax)) { if (hostapd_get_oper_chwidth(iface->conf) == CHANWIDTH_80MHZ && !acs_usable_bw80_chan(chan)) { wpa_printf(MSG_DEBUG, "ACS: Channel %d: not allowed as primary channel for 80 MHz bandwidth", chan->chan); continue; } if (hostapd_get_oper_chwidth(iface->conf) == CHANWIDTH_160MHZ && !acs_usable_bw160_chan(chan)) { wpa_printf(MSG_DEBUG, "ACS: Channel %d: not allowed as primary channel for 160 MHz bandwidth", chan->chan); continue; } } factor = 0; if (acs_usable_chan(chan)) factor = chan->interference_factor; total_weight = 1; for (j = 1; j < n_chans; j++) { adj_chan = acs_find_chan(iface, chan->freq + (j * 20)); if (!adj_chan) break; if (!chan_bw_allowed(adj_chan, bw, 1, 0)) { wpa_printf(MSG_DEBUG, "ACS: PRI Channel %d: secondary channel %d BW %u is not supported", chan->chan, adj_chan->chan, bw); break; } if (acs_usable_chan(adj_chan)) { factor += adj_chan->interference_factor; total_weight += 1; } } if (j != n_chans) { wpa_printf(MSG_DEBUG, "ACS: Channel %d: not enough bandwidth", chan->chan); continue; } /* 2.4 GHz has overlapping 20 MHz channels. Include adjacent * channel interference factor. */ if (is_24ghz_mode(mode->mode)) { for (j = 0; j < n_chans; j++) { adj_chan = acs_find_chan(iface, chan->freq + (j * 20) - 5); if (adj_chan && acs_usable_chan(adj_chan)) { factor += ACS_ADJ_WEIGHT * adj_chan->interference_factor; total_weight += ACS_ADJ_WEIGHT; } adj_chan = acs_find_chan(iface, chan->freq + (j * 20) - 10); if (adj_chan && acs_usable_chan(adj_chan)) { factor += ACS_NEXT_ADJ_WEIGHT * adj_chan->interference_factor; total_weight += ACS_NEXT_ADJ_WEIGHT; } adj_chan = acs_find_chan(iface, chan->freq + (j * 20) + 5); if (adj_chan && acs_usable_chan(adj_chan)) { factor += ACS_ADJ_WEIGHT * adj_chan->interference_factor; total_weight += ACS_ADJ_WEIGHT; } adj_chan = acs_find_chan(iface, chan->freq + (j * 20) + 10); if (adj_chan && acs_usable_chan(adj_chan)) { factor += ACS_NEXT_ADJ_WEIGHT * adj_chan->interference_factor; total_weight += ACS_NEXT_ADJ_WEIGHT; } } } factor /= total_weight; bias = NULL; if (iface->conf->acs_chan_bias) { for (k = 0; k < iface->conf->num_acs_chan_bias; k++) { bias = &iface->conf->acs_chan_bias[k]; if (bias->channel == chan->chan) break; bias = NULL; } } else if (is_24ghz_mode(mode->mode) && is_common_24ghz_chan(chan->chan)) { tmp_bias.channel = chan->chan; tmp_bias.bias = ACS_24GHZ_PREFER_1_6_11; bias = &tmp_bias; } if (bias) { factor *= bias->bias; wpa_printf(MSG_DEBUG, "ACS: * channel %d: total interference = %Lg (%f bias)", chan->chan, factor, bias->bias); } else { wpa_printf(MSG_DEBUG, "ACS: * channel %d: total interference = %Lg", chan->chan, factor); } if (acs_usable_chan(chan) && (!*ideal_chan || factor < *ideal_factor)) { *ideal_factor = factor; *ideal_chan = chan; } /* This channel would at least be usable */ if (!(*rand_chan)) *rand_chan = chan; } } /* * At this point it's assumed chan->interference_factor has been computed. * This function should be reusable regardless of interference computation * option (survey, BSS, spectral, ...). chan->interference factor must be * summable (i.e., must be always greater than zero). */ static struct hostapd_channel_data * acs_find_ideal_chan(struct hostapd_iface *iface) { struct hostapd_channel_data *ideal_chan = NULL, *rand_chan = NULL; long double ideal_factor = 0; int i; int n_chans = 1; u32 bw; struct hostapd_hw_modes *mode; if (is_6ghz_op_class(iface->conf->op_class)) { bw = op_class_to_bandwidth(iface->conf->op_class); n_chans = bw / 20; goto bw_selected; } /* TODO: HT40- support */ if (iface->conf->ieee80211n && iface->conf->secondary_channel == -1) { wpa_printf(MSG_ERROR, "ACS: HT40- is not supported yet. Please try HT40+"); return NULL; } if (iface->conf->ieee80211n && iface->conf->secondary_channel) n_chans = 2; if (iface->conf->ieee80211ac || iface->conf->ieee80211ax) { switch (hostapd_get_oper_chwidth(iface->conf)) { case CHANWIDTH_80MHZ: n_chans = 4; break; case CHANWIDTH_160MHZ: n_chans = 8; break; } } bw = num_chan_to_bw(n_chans); bw_selected: /* TODO: VHT/HE80+80. Update acs_adjust_center_freq() too. */ wpa_printf(MSG_DEBUG, "ACS: Survey analysis for selected bandwidth %d MHz", bw); for (i = 0; i < iface->num_hw_features; i++) { mode = &iface->hw_features[i]; if (!hostapd_hw_skip_mode(iface, mode)) acs_find_ideal_chan_mode(iface, mode, n_chans, bw, &rand_chan, &ideal_chan, &ideal_factor); } if (ideal_chan) { wpa_printf(MSG_DEBUG, "ACS: Ideal channel is %d (%d MHz) with total interference factor of %Lg", ideal_chan->chan, ideal_chan->freq, ideal_factor); return ideal_chan; } return rand_chan; } static void acs_adjust_center_freq(struct hostapd_iface *iface) { int offset; wpa_printf(MSG_DEBUG, "ACS: Adjusting VHT center frequency"); switch (hostapd_get_oper_chwidth(iface->conf)) { case CHANWIDTH_USE_HT: offset = 2 * iface->conf->secondary_channel; break; case CHANWIDTH_80MHZ: offset = 6; break; case CHANWIDTH_160MHZ: offset = 14; break; default: /* TODO: How can this be calculated? Adjust * acs_find_ideal_chan() */ wpa_printf(MSG_INFO, "ACS: Only VHT20/40/80/160 is supported now"); return; } hostapd_set_oper_centr_freq_seg0_idx(iface->conf, iface->conf->channel + offset); } static int acs_study_survey_based(struct hostapd_iface *iface) { wpa_printf(MSG_DEBUG, "ACS: Trying survey-based ACS"); if (!iface->chans_surveyed) { wpa_printf(MSG_ERROR, "ACS: Unable to collect survey data"); return -1; } if (!acs_surveys_are_sufficient(iface)) { wpa_printf(MSG_ERROR, "ACS: Surveys have insufficient data"); return -1; } acs_survey_all_chans_interference_factor(iface); return 0; } static int acs_study_options(struct hostapd_iface *iface) { if (acs_study_survey_based(iface) == 0) return 0; /* TODO: If no surveys are available/sufficient this is a good * place to fallback to BSS-based ACS */ return -1; } static void acs_study(struct hostapd_iface *iface) { struct hostapd_channel_data *ideal_chan; int err; err = acs_study_options(iface); if (err < 0) { wpa_printf(MSG_ERROR, "ACS: All study options have failed"); goto fail; } ideal_chan = acs_find_ideal_chan(iface); if (!ideal_chan) { wpa_printf(MSG_ERROR, "ACS: Failed to compute ideal channel"); err = -1; goto fail; } iface->conf->channel = ideal_chan->chan; iface->freq = ideal_chan->freq; if (iface->conf->ieee80211ac || iface->conf->ieee80211ax) acs_adjust_center_freq(iface); err = 0; fail: /* * hostapd_setup_interface_complete() will return -1 on failure, * 0 on success and 0 is HOSTAPD_CHAN_VALID :) */ if (hostapd_acs_completed(iface, err) == HOSTAPD_CHAN_VALID) { acs_cleanup(iface); return; } /* This can possibly happen if channel parameters (secondary * channel, center frequencies) are misconfigured */ wpa_printf(MSG_ERROR, "ACS: Possibly channel configuration is invalid, please report this along with your config file."); acs_fail(iface); } static void acs_scan_complete(struct hostapd_iface *iface) { int err; iface->scan_cb = NULL; wpa_printf(MSG_DEBUG, "ACS: Using survey based algorithm (acs_num_scans=%d)", iface->conf->acs_num_scans); err = hostapd_drv_get_survey(iface->bss[0], 0); if (err) { wpa_printf(MSG_ERROR, "ACS: Failed to get survey data"); goto fail; } if (++iface->acs_num_completed_scans < iface->conf->acs_num_scans) { err = acs_request_scan(iface); if (err) { wpa_printf(MSG_ERROR, "ACS: Failed to request scan"); goto fail; } return; } acs_study(iface); return; fail: hostapd_acs_completed(iface, 1); acs_fail(iface); } static int * acs_request_scan_add_freqs(struct hostapd_iface *iface, struct hostapd_hw_modes *mode, int *freq) { struct hostapd_channel_data *chan; int i; for (i = 0; i < mode->num_channels; i++) { chan = &mode->channels[i]; if (chan->flag & HOSTAPD_CHAN_DISABLED) continue; if (!is_in_chanlist(iface, chan)) continue; if (!is_in_freqlist(iface, chan)) continue; if (chan->max_tx_power < iface->conf->min_tx_power) continue; *freq++ = chan->freq; } return freq; } static int acs_request_scan(struct hostapd_iface *iface) { struct wpa_driver_scan_params params; int i, *freq; int num_channels; struct hostapd_hw_modes *mode; os_memset(&params, 0, sizeof(params)); num_channels = 0; for (i = 0; i < iface->num_hw_features; i++) { mode = &iface->hw_features[i]; if (!hostapd_hw_skip_mode(iface, mode)) num_channels += mode->num_channels; } params.freqs = os_calloc(num_channels + 1, sizeof(params.freqs[0])); if (params.freqs == NULL) return -1; freq = params.freqs; for (i = 0; i < iface->num_hw_features; i++) { mode = &iface->hw_features[i]; if (!hostapd_hw_skip_mode(iface, mode)) freq = acs_request_scan_add_freqs(iface, mode, freq); } *freq = 0; if (params.freqs == freq) { wpa_printf(MSG_ERROR, "ACS: No available channels found"); os_free(params.freqs); return -1; } iface->scan_cb = acs_scan_complete; wpa_printf(MSG_DEBUG, "ACS: Scanning %d / %d", iface->acs_num_completed_scans + 1, iface->conf->acs_num_scans); if (hostapd_driver_scan(iface->bss[0], &params) < 0) { wpa_printf(MSG_ERROR, "ACS: Failed to request initial scan"); acs_cleanup(iface); os_free(params.freqs); return -1; } os_free(params.freqs); return 0; } enum hostapd_chan_status acs_init(struct hostapd_iface *iface) { wpa_printf(MSG_INFO, "ACS: Automatic channel selection started, this may take a bit"); if (iface->drv_flags & WPA_DRIVER_FLAGS_ACS_OFFLOAD) { wpa_printf(MSG_INFO, "ACS: Offloading to driver"); if (hostapd_drv_do_acs(iface->bss[0])) return HOSTAPD_CHAN_INVALID; return HOSTAPD_CHAN_ACS; } if (!iface->current_mode && iface->conf->hw_mode != HOSTAPD_MODE_IEEE80211ANY) return HOSTAPD_CHAN_INVALID; acs_cleanup(iface); if (acs_request_scan(iface) < 0) return HOSTAPD_CHAN_INVALID; hostapd_set_state(iface, HAPD_IFACE_ACS); wpa_msg(iface->bss[0]->msg_ctx, MSG_INFO, ACS_EVENT_STARTED); return HOSTAPD_CHAN_ACS; } 详细分析代码作用,要求具体到每个函数的功能和具体实现
10-17
#include "AtilDefs.h" #include "Image.h" #include "RgbModel.h" #include "RgbPaletteModel.h" #include <PngCustomProperties.h> #include "BitonalModel.h" #include "atilformats.h" #include "JFIFFormatCodec.h" #include "TiffFormatCodec.h" #include "TiffCustomProperties.h" #include "BmpFormatCodec.h" #include "FileSpecifier.h" #include "FileWriteDescriptor.h" #include "FileReadDescriptor.h" #include "RowProviderInterface.h" #include <adsmigr.h> #include <adsdef.h> #include <acedads.h> #include <acutads.h> #include <acgs.h> #include <gs.h> #pragma comment (lib ,"AdImaging.lib") #pragma comment (lib ,"AdIntImgServices.lib") using namespace std; class CRhRhImgServicesScreenshot { public: enum eScreenshotFormatType { kJPG, kPNG, kTIF, kBMP }; public: CRhRhImgServicesScreenshot(void); virtual ~CRhRhImgServicesScreenshot() ; int getCVPort(); Atil::DataModel* colorSpace(char*& pRGBData, int colorDepth, int paletteSize); Atil::Image* constructAtilImg(char* pRGBData, unsigned long bufferSize, unsigned long rowBytes, unsigned long xSize, unsigned long ySize, int colorDepth, int paletteSize); bool writeImageFile(Atil::Image* pImageSource, eScreenshotFormatType formatType, wchar_t const* pFileName); bool snapGSView(eScreenshotFormatType fmt, AcGsView* pView, int width, int height, double& fieldWidth, double& fieldHeight, AcGePoint3d& position, AcGePoint3d& target, AcGeVector3d& upVector, const TCHAR* imagePath); bool getTempImgFile(TCHAR* fileName); bool RecordViewDetails(eScreenshotFormatType fmt, double& fieldWidth, double& fieldHeight, AcGePoint3d& position, AcGePoint3d& target, AcGeVector3d& upVector, const TCHAR* imagePath); static void test(); } ; int CRhRhImgServicesScreenshot::getCVPort() { struct resbuf rb; ads_getvar(_T("CVPORT"), &rb); return rb.resval.rint; } Atil::DataModel* CRhRhImgServicesScreenshot::colorSpace(char*& pRGBData, int colorDepth, int paletteSize) { _ASSERT(NULL != pRGBData); // Setup a color space, with palette if needed Atil::DataModel* pDm = NULL; if (colorDepth == 8) { Atil::RgbColor space[256]; Atil::RgbPaletteModel* pPM = new Atil::RgbPaletteModel(); _ASSERT(NULL != pPM); if (!pPM) return NULL; pDm = pPM; char* palette = pRGBData; pRGBData += paletteSize; for (int i = 0; i < paletteSize; i += 4) { space[i / 4] = Atil::RgbColor(static_cast<unsigned char>(palette[i + 2]), static_cast<unsigned char>(palette[i + 1]), static_cast<unsigned char>(palette[i]), 255); } pPM->setEntries(0, 256, (Atil::RgbColor*)&space); } else pDm = new Atil::RgbModel(32); _ASSERT(NULL != pDm); return pDm; } Atil::Image* CRhRhImgServicesScreenshot::constructAtilImg(char* pRGBData, unsigned long bufferSize, unsigned long rowBytes, unsigned long xSize, unsigned long ySize, int colorDepth, int paletteSize) { if ((8 != colorDepth) && (32 != colorDepth)) { return NULL; } if (paletteSize) { if ((paletteSize < 0) || (paletteSize > 255)) { return NULL; } } if ((xSize <= 0) || (ySize <= 0)) { return NULL; } Atil::Image* pImg = NULL; Atil::Size size(xSize, ySize); // construct the Atil::Image object if (pRGBData) { // Check the buffer for size and definition if (bufferSize) { if (!rowBytes) { return NULL; } // did they allocate enough? if (rowBytes * ySize > bufferSize) { return NULL; } } else { return NULL; } Atil::DataModel* pM = colorSpace(pRGBData, colorDepth, paletteSize); _ASSERT(NULL != pM); if (NULL == pM) return NULL; try { // BEWARE: pRGBData may be moved in colorSpace pImg = new Atil::Image(pRGBData, bufferSize, rowBytes, size, pM); } catch (Atil::ATILException* pExpCon) { // image construction failure delete pExpCon; delete pM; pImg = NULL; _ASSERT(FALSE); return NULL; } delete pM; } else { Atil::RgbModel rgbM(32); Atil::RgbGrayModel gM; Atil::ImagePixel initialColor(colorDepth == 32 ? Atil::DataModelAttributes::kRgba : Atil::DataModelAttributes::kGray); initialColor.setToZero(); try { pImg = new Atil::Image(size, colorDepth == 32 ? &rgbM : &gM, initialColor); } catch (Atil::ATILException* pExpCon) { // image construction failure delete pExpCon; pImg = NULL; _ASSERT(FALSE); return NULL; } } _ASSERT(NULL != pImg); return pImg; } bool CRhRhImgServicesScreenshot::writeImageFile(Atil::Image* pImageSource, eScreenshotFormatType formatType, wchar_t const* pFileName) { _ASSERT(NULL != pImageSource); if (NULL == pImageSource) return false; _ASSERT(pImageSource->isValid()); if (!pImageSource->isValid()) return false; if (PathFileExists(pFileName)) DeleteFile(pFileName); /*if(PathFileExists(pFileName)) { if(IsFileReadOnly(pFileName)) { RemoveReadonlyAttribute(pFileName); DeleteFile(pFileName); } }*/ if (PathFileExists(pFileName)) return false; Atil::RowProviderInterface* pPipe = pImageSource->read(pImageSource->size(), Atil::Offset(0, 0)); _ASSERTE(NULL != pPipe); if (!pPipe) return false; Atil::FileWriteDescriptor* pFWD = NULL; Atil::ImageFormatCodec* pCodec = NULL; if (formatType == kJPG) pCodec = new JfifFormatCodec(); else if (formatType == kPNG) pCodec = new PngFormatCodec(); else if (formatType == kTIF) pCodec = new TiffFormatCodec(); else if (formatType == kBMP) pCodec = new BmpFormatCodec(); _ASSERTE(NULL != pCodec); if (NULL == pCodec) return false; if (!Atil::FileWriteDescriptor::isCompatibleFormatCodec(pCodec, &(pPipe->dataModel()), pPipe->size())) { delete pCodec; return false; } pFWD = new Atil::FileWriteDescriptor(pCodec); _ASSERTE(NULL != pFWD); #ifdef UNICODE #ifndef _ADESK_MAC_ Atil::FileSpecifier fs(Atil::StringBuffer((lstrlen(pFileName) + 1) * sizeof(TCHAR), (const Atil::Byte*)pFileName, Atil::StringBuffer::kUTF_16), Atil::FileSpecifier::kFilePath); #else Atil::FileSpecifier fs(Atil::StringBuffer((lstrlen(pFileName) + 1) * sizeof(TCHAR), (const Atil::Byte*)pFileName, Atil::StringBuffer::kUTF_32), Atil::FileSpecifier::kFilePath); #endif #else Atil::FileSpecifier fs(Atil::StringBuffer(lstrlen(pFileName) + 1, (const Atil::Byte*)pFileName, Atil::StringBuffer::kASCII), Atil::FileSpecifier::kFilePath); #endif if (!pFWD->setFileSpecifier(fs)) return false; pFWD->createImageFrame(pPipe->dataModel(), pPipe->size()); if (formatType == kPNG) { Atil::FormatCodecPropertyInterface* pProp = pFWD->getProperty(Atil::FormatCodecPropertyInterface::kCompression); if (pProp != NULL) { PngCompression* pPngComp = (PngCompression*)(pProp); if (pPngComp != NULL) { // Why not compress all we can? pPngComp->selectCompression(PngCompressionType::kHigh); pFWD->setProperty(pPngComp); } delete pProp; pProp = NULL; } } else if (formatType == kTIF) { Atil::FormatCodecPropertyInterface* pProp = pFWD->getProperty(Atil::FormatCodecPropertyInterface::kCompression); if (pProp != NULL) { TiffCompression* pComp = (TiffCompression*)(pProp); if (pComp != NULL) { // G4 is only valid for 1 bit images. if (pComp->selectCompression(TiffCompressionType::kCCITT_FAX4) == false) { // So if that fails, resort to LZW now that it is patent free if (pComp->selectCompression(TiffCompressionType::kLZW) == false) { // If that fails (and is shouldn't, be) then set none. pComp->selectCompression(TiffCompressionType::kNone); } } pFWD->setProperty(pComp); } delete pProp; pProp = NULL; } } //TB141111 this was missing: int iRet = pFWD->writeImageFrame(pPipe); delete pFWD; pFWD = NULL; return true; } bool CRhRhImgServicesScreenshot::snapGSView(eScreenshotFormatType fmt, AcGsView* pView, int width, int height, double& fieldWidth, double& fieldHeight, AcGePoint3d& position, AcGePoint3d& target, AcGeVector3d& upVector, const TCHAR* imagePath) { Atil::Size size(width, height); int nBytesPerRow = Atil::DataModel::bytesPerRow(width, Atil::DataModelAttributes::k32); unsigned long nBufferSize = height * nBytesPerRow; // Create an ATIL image for accepting the rendered image. //std::auto_ptr apCharBuffer = std::auto_ptr(new char[nBufferSize]); std::auto_ptr<char> apCharBuffer = std::auto_ptr<char>(new char[nBufferSize]); char* pSnapshotData = apCharBuffer.get(); // auto_ptr still owns the buffer. // in shaded mode (from GS) Atil::Image* pImage = NULL; pImage = constructAtilImg(pSnapshotData, nBufferSize, nBytesPerRow, width, height, 32, 0); //std::auto_ptr autodeleter = std::auto_ptr(pImage); // auto_ptr now owns the image std::auto_ptr<Atil::Image> autodeleter = std::auto_ptr<Atil::Image>(pImage); pView->getSnapShot(pImage, AcGsDCPoint(0, 0)); // add a temp image to invert the image. do we have a better way to turn an image around? Atil::Image imgTempForInverted(pImage->read(pImage->size(), Atil::Offset(0, 0), Atil::kBottomUpLeftRight)); *pImage = imgTempForInverted; if (!writeImageFile(pImage, fmt, imagePath)) { acutPrintf(_T("\nFailed to write image file %s"), imagePath); return false; } else acutPrintf(_T("\nSuccessfully written %s"), imagePath); // record the view data fieldHeight = pView->fieldHeight(); fieldWidth = pView->fieldWidth(); position = pView->position(); target = pView->target(); upVector = pView->upVector(); return true; } bool CRhRhImgServicesScreenshot::getTempImgFile(TCHAR* fileName) { // Here we create a temp bmp file as a transitional file TCHAR tempDic[MAX_PATH]; ::memset(tempDic, 0, MAX_PATH); DWORD nRetSize = ::GetTempPath(MAX_PATH, tempDic); if (nRetSize > MAX_PATH || nRetSize == 0) { const TCHAR* tempStr = _T("C:\\temp"); if (wcscpy_s(tempDic, tempStr) != 0) { return false; } if (::PathFileExists(tempStr) == FALSE && ::CreateDirectory(tempStr, NULL) == FALSE) { return false; } } // create the temp file whose prefix is "img" if (::GetTempFileName(tempDic, _T("tmp"), 0, fileName) == 0) { return false; } // now split the filepath into its individual components TCHAR drive[_MAX_DRIVE], dir[_MAX_DIR], fname[_MAX_FNAME], ext[_MAX_EXT]; _tsplitpath(fileName, drive, dir, fname, ext); _stprintf(fileName, _T("%s%s%s.bmp"), drive, dir, fname); return true; } // by Fenton Webb, DevTech, 1/30/2013 // screen shoots the view details as a BMP bool CRhRhImgServicesScreenshot::RecordViewDetails(eScreenshotFormatType fmt, double& fieldWidth, double& fieldHeight, AcGePoint3d& position, AcGePoint3d& target, AcGeVector3d& upVector, const TCHAR* imagePath) { int iVP = getCVPort(); // Compute the viewport dimensions. int nLeft, nBottom, nRight, nTop; int iImageWidth, iImageHeight; acgsGetViewportInfo(iVP, nLeft, nBottom, nRight, nTop); iImageWidth = nRight - nLeft + 1; iImageHeight = nTop - nBottom + 1; Atil::Size size(iImageWidth, iImageHeight); int nBytesPerRow = Atil::DataModel::bytesPerRow(iImageWidth, Atil::DataModelAttributes::k32); unsigned long nBufferSize = iImageHeight * nBytesPerRow; // Create an ATIL image for accepting the rendered image. //std::auto_ptr autoBuff = std::auto_ptr(new char[nBufferSize]); std::auto_ptr<char> autoBuff = std::auto_ptr<char>(new char[nBufferSize]); char* pSnapshotData = autoBuff.get(); Atil::Image* pImage = NULL; // see if there is a GS view created //AcGsView *pView = acgsGetGsView(iVP, false); resbuf cvport; acedGetVar(L"CVPORT", &cvport); AcGsView* pView = acgsGetCurrent3dAcGsView(cvport.resval.rint); // if not if (NULL == pView) { // then we must be in 2D wireframe mode, so use acgsGetScreenShot //std::auto_ptr autoScreenShot(acgsGetScreenShot(iVP)); std::auto_ptr<AcGsScreenShot> autoScreenShot(acgsGetScreenShot(iVP)); AcGsScreenShot* screenShot = autoScreenShot.get(); // auto_ptr still owns the pointer. if (screenShot) { int w = 0, h = 0, d = 0; screenShot->getSize(w, h, d); char* pBufTemp = pSnapshotData; for (int row = 0; row < h; row++) { memcpy(pBufTemp, screenShot->getScanline(0, row), nBytesPerRow); // convert from RGBA to BGRA char* pColor = pBufTemp; for (int i = 0; i < w; i++) // Slow but it works { char temp = *pColor; *pColor = *(pColor + 2); *(pColor + 2) = temp; pColor += 4; } pBufTemp += nBytesPerRow; } //pImage = constructAtilImg(reinterpret_cast(pSnapshotData), nBufferSize, nBytesPerRow, w, h, 32, 0); pImage = constructAtilImg(reinterpret_cast<char*>(pSnapshotData), nBufferSize, nBytesPerRow, w, h, 32, 0); //std::auto_ptr autodeleter = std::auto_ptr(pImage); // auto_ptr now owns the image std::auto_ptr<Atil::Image> autodeleter = std::auto_ptr<Atil::Image>(pImage); if (!writeImageFile(pImage, fmt, imagePath)) { acutPrintf(_T("\nFailed to write image file %s"), imagePath); return false; } else acutPrintf(_T("\nSuccessfully written %s"), imagePath); } return true; } else { return snapGSView(fmt, pView, iImageWidth, iImageHeight, fieldHeight, fieldWidth, position, target, upVector, imagePath); } } 能否写个复制粘贴到剪切板功能
10-28
Traceback (most recent call last): File "C:\Users\86158\PycharmProjects\PythonProject2\templates\ds3.py", line 247, in <module> draw_scene() File "C:\Users\86158\PycharmProjects\PythonProject2\templates\ds3.py", line 172, in draw_scene pygame.draw.lines(screen, BLUE, False, points, 2) ValueError: points argument must contain 2 or more points 为什么会报错? import pygame import math import numpy as np from collections import deque # 初始化Pygame pygame.init() # 屏幕设置 WIDTH, HEIGHT = 800, 800 screen = pygame.display.set_mode((WIDTH, HEIGHT)) pygame.display.set_caption("智能避障路径规划") # 颜色定义 RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) BLACK = (0, 0, 0) WHITE = (255, 255, 255) GRAY = (200, 200, 200) YELLOW = (255, 255, 0) # 坐标缩放 SCALE = 30 OFFSET = 50 def to_screen_coords(x, y): """将逻辑坐标转换为屏幕坐标""" return (int(x * SCALE + OFFSET), int(HEIGHT - (y * SCALE + OFFSET))) def from_screen_coords(sx, sy): """将屏幕坐标转换回逻辑坐标""" return ((sx - OFFSET) / SCALE, (HEIGHT - sy - OFFSET) / SCALE) # 游戏元素 start_pos = (0, 0) # 起点 goal_pos = (10, 10) # 终点 obstacles = [] # 存储所有障碍物 current_obstacle = [] # 当前正在绘制的障碍物 # 游戏状态 path = [] current_pos = list(start_pos) moving = False drawing = False # 是否正在绘制障碍物 explored_points = set() # 已探索的点 frontier = deque() # 探索边界 # 主游戏循环 clock = pygame.time.Clock() def line_intersection(line1, line2): """计算两条线段的交点""" x1, y1 = line1[0] x2, y2 = line1[1] x3, y3 = line2[0] x4, y4 = line2[1] den = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4) if den == 0: return None # 平行或共线 t = ((x1 - x3) * (y3 - y4) - (y1 - y3) * (x3 - x4)) / den u = -((x1 - x2) * (y1 - y3) - (y1 - y2) * (x1 - x3)) / den if 0 <= t <= 1 and 0 <= u <= 1: x = x1 + t * (x2 - x1) y = y1 + t * (y2 - y1) return (x, y) return None def is_path_clear(start, end, obstacles): """检查路径是否与任何障碍物相交""" test_line = (start, end) for obstacle in obstacles: for i in range(len(obstacle) - 1): obs_line = (obstacle[i], obstacle[i + 1]) if line_intersection(test_line, obs_line): return False return True def heuristic(a, b): """启发式函数:欧几里得距离""" return math.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2) def find_path(start, goal, obstacles): """A*算法寻找最优路径""" frontier = [] frontier.append((0, start)) came_from = {} cost_so_far = {} came_from[start] = None cost_so_far[start] = 0 while frontier: frontier.sort() current = frontier.pop(0)[1] if current == goal: break # 生成邻近点(8方向) for dx, dy in [(0, 1), (1, 0), (0, -1), (-1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]: next_pos = (current[0] + dx * 0.5, current[1] + dy * 0.5) # 检查是否越界 if not (0 <= next_pos[0] <= 20 and 0 <= next_pos[1] <= 20): continue # 检查路径是否畅通 if not is_path_clear(current, next_pos, obstacles): continue new_cost = cost_so_far[current] + heuristic(current, next_pos) if next_pos not in cost_so_far or new_cost < cost_so_far[next_pos]: cost_so_far[next_pos] = new_cost priority = new_cost + heuristic(goal, next_pos) frontier.append((priority, next_pos)) came_from[next_pos] = current # 重建路径 path = [] current = goal while current != start: path.append(current) current = came_from.get(current, start) path.append(start) path.reverse() return path if len(path) > 1 else [start, goal] def optimize_path(path, obstacles): """优化路径,去除不必要的中间点""" if len(path) <= 2: return path optimized = [path[0]] i = 0 while i < len(path) - 1: j = len(path) - 1 while j > i + 1: if is_path_clear(optimized[-1], path[j], obstacles): break j -= 1 optimized.append(path[j]) i = j return optimized def draw_scene(): """绘制场景""" screen.fill(WHITE) # 绘制所有障碍物 for obstacle in obstacles: if len(obstacle) > 1: points = [to_screen_coords(*p) for p in obstacle] pygame.draw.lines(screen, BLUE, False, points, 2) # 绘制当前正在绘制的障碍物 if drawing and len(current_obstacle) > 0: points = [to_screen_coords(*p) for p in current_obstacle] pygame.draw.lines(screen, BLUE, False, points, 2) # 绘制起点和终点 pygame.draw.circle(screen, RED, to_screen_coords(*start_pos), 10) pygame.draw.circle(screen, GREEN, to_screen_coords(*goal_pos), 10) # 绘制路径 if len(path) >= 2: for i in range(len(path) - 1): pygame.draw.line(screen, GRAY, to_screen_coords(*path[i]), to_screen_coords(*path[i + 1]), 2) # 绘制当前位置 pygame.draw.circle(screen, RED, to_screen_coords(*current_pos), 10) # 显示操作提示 font = pygame.font.SysFont(None, 24) help_text = [ "左键: 绘制障碍物轨迹", "空格: 开始移动", "C: 清除所有障碍物", "R: 重置红点位置" ] for i, text in enumerate(help_text): text_surface = font.render(text, True, BLACK) screen.blit(text_surface, (10, 10 + i * 25)) running = True while running: # 事件处理 for event in pygame.event.get(): if event.type == pygame.QUIT: running = False elif event.type == pygame.MOUSEBUTTONDOWN: if event.button == 1: # 左键开始绘制障碍物 drawing = True current_obstacle = [] x, y = from_screen_coords(*event.pos) current_obstacle.append((x, y)) last_pos = (x, y) elif event.type == pygame.MOUSEMOTION: if drawing: x, y = from_screen_coords(*event.pos) current_pos = (x, y) # 只有当移动一定距离才记录新点 if last_pos and math.hypot(x - last_pos[0], y - last_pos[1]) > 0.2: current_obstacle.append((x, y)) last_pos = (x, y) elif event.type == pygame.MOUSEBUTTONUP: if event.button == 1 and drawing: # 左键释放结束绘制 drawing = False if len(current_obstacle) > 1: obstacles.append(current_obstacle) current_obstacle = [] last_pos = None elif event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE: if not moving: current_pos = list(start_pos) path = find_path(start_pos, goal_pos, obstacles) if len(path) < 2: print("无法找到路径,请调整障碍物!") else: moving = True elif event.key == pygame.K_c: obstacles.clear() path.clear() moving = False elif event.key == pygame.K_r: current_pos = list(start_pos) path.clear() moving = False draw_scene() # 移动逻辑 if moving and path: target = path[1] dx = target[0] - current_pos[0] dy = target[1] - current_pos[1] dist = math.hypot(dx, dy) if dist < 0.1: path.pop(0) if len(path) == 1: moving = False else: speed = 0.1 current_pos[0] += dx / dist * speed current_pos[1] += dy / dist * speed pygame.display.flip() clock.tick(60) pygame.quit()
06-21
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值