大数据Hadoop核心知识入门学习注意事项

今天来介绍新手学习hadoop的入门注意事项。这篇文章一来谈谈hadoop核心知识学习。

  

  首先hadoop分为hadoop1.X和hadoop2.X,并且还有hadoop生态系统,那么下面我们以hadoop2.x为例进行详细介绍:

  Hadoop的核心是mapreduce和hdfs。

  Mapreduce:mapreduce是很多人都需要迈过去的槛,它比较难以理解,我们有时候即使写出了mapreduce程序,但是还是摸不着头脑。我们都知道mapreduce是一种编程模型,那么它能干什么,对我有什么用。它的原理是什么,为什么我们编写了map函数,reduce函数就可以在多台机器上运行,这些问题或许都给初学者带来了困扰。

  那么我们就要了解:

  什么是mapreduce?

  Mapreduce的工作原理是什么?

  Mapreduce的工作流程是什么?

  Mapreduce的编程模型是什么?

  shuffle是什么?

  partition是什么?

  combiner是什麽?

  他们三者之间的关系是什么?

  map的个数由谁来决定,如何计算?

  reduce个数由谁来决定,如何计算?

  mapreduce熟悉了,还有一些问题困扰着初学者,虽然有了Java基础,但是我们需要搭建开发环境,该如何搭建开发环境?

  那么就需要我们学习Windows上如何使用Eclipse远程连接Hadoop并进行程序开发

  因为在操作mapredcue过程中伴随着操作hdfs,就像我们传统开发,编程是离不开数据库一样。hdfs可以理解为传统编程的数据库,但是其实他不是,真正的数据库是hadoopdatabase,也就是hbase。好了下面,我们开始讲如何学习hdfs:

  HDFS:我们至少应该学习以下内容

  什么是HDFS及HDFS架构设计?

  HDFS体系结构简介及优缺点?

  Hdfs如何存储数据?

  Hdfs如何读取数据?

  Hdfs如何写入文件?

  Hdfs的副本存放策略?

  如何访问hdfs?

  Hdfs数据如何复制?

  Namenode的热备?

  hadoop生态系统内容还是比较多的,但是最常用的是hive,hbase。

  Hive是初学者进入大数据(hadoop)行业最好的选择入口,因为它提供了简单的类sql语句,使得不懂得mapreduce程序编写的学员也能够很轻松的进入大数据行业。所以建议大家(尤其是零基础的学员)在学习hadoop的过程中,可以着重加强对hive的学习,尤其是hive语句的熟练操作。当然对于有数据库基础的学员学习hive就更容易一些。

  Hbase是一种nosql数据库,只有当数据量非常大时,比如TB、PB级,hbase才能发挥出很好的效果,所以对于致力于加入大公司的学员,可以深入学习hbase,尤其是hbase表的设计,rowkey的设计,hbase性能的调优,hbase和hive、impala的结合等。

  Yarn是分布式集群资源管理框架,也是hadoop2.x和hadoop1.x明显不同的地方,所以我们还是有必要对yarn的原理、框架、组成部分进行详细的了解的。

  对于hadoop其他的组件:比如海量日志收集工具flume,数据导入导出工具sqoop,应用程序协调服务zookeeper,学员可以结合实战项目学习其原理,如何使用即可。

  对于想从事数据挖掘的学员,可以深入学习mahout、机器学习、算法等相关知识,根据学员自己的职业选择和兴趣爱好自主选择,建议零基础的学员最好是先从hive入手。

  Storm是一种基于流的计算框架,spark是基于内存的计算框架,它们是不同于mapreduce的计算框架,但作用都是对数据的处理和分析,建议初学者在学习好mapreduce的前提下,可以对storm和spark进行深入的学习,切记贪多嚼不烂。通而不精。

  如果想更加深入的学习,丰富自己的知识,可以选择性的学习一下shell、python脚本语言,Redis、MongoDB等nosql数据库,如果想做hadoop运维的,也可以学习ganglia和nagios等监控工具。

  最后建议大家在学习过程中一定要由浅入深、从简单到复杂、理论和实践相结合,由于hadoop生态系统的工具比较多,每个工具有不同的侧重点,所以再次提醒大家切记贪多、切记浮躁、只有基础扎实了,后续的学习才会更轻松、更快速、更高效。大数据学习资料分享群119599574 不管你是小白还是大牛,小编我都挺欢迎,今天的源码已经上传到群文件,不定期分享干货,包括我自己整理的一份最新的适合2018年学习的大数据开发和零基础入门教程,欢迎初学和进阶中的小伙伴。

电动汽车数据集:2025年3K+记录 真实电动汽车数据:特斯拉、宝马、日产车型,含2025年电池规格和销售数据 关于数据集 电动汽车数据集 这个合成数据集包含许多品牌和年份的电动汽车和插电式车型的记录,捕捉技术规格、性能、定价、制造来源、销售和安全相关属性。每一行代表由vehicle_ID标识的唯一车辆列表。 关键特性 覆盖范围:全球制造商和车型组合,包括纯电动汽车和插电式混合动力汽车。 范围:电池化学成分、容量、续航里程、充电标准和速度、价格、产地、自主水平、排放、安全等级、销售和保修。 时间跨度:模型跨度多年(包括传统和即将推出的)。 数据质量说明: 某些行可能缺少某些字段(空白)。 几个分类字段包含不同的、特定于供应商的值(例如,Charging_Type、Battery_Type)。 各列中的单位混合在一起;注意kWh、km、hr、USD、g/km和额定值。 列 列类型描述示例 Vehicle_ID整数每个车辆记录的唯一标识符。1 制造商分类汽车品牌或OEM。特斯拉 型号类别特定型号名称/变体。型号Y 与记录关联的年份整数模型。2024 电池_类型分类使用的电池化学/技术。磷酸铁锂 Battery_Capacity_kWh浮充电池标称容量,单位为千瓦时。75.0 Range_km整数表示充满电后的行驶里程(公里)。505 充电类型主要充电接口或功能。CCS、NACS、CHAdeMO、DCFC、V2G、V2H、V2L Charge_Time_hr浮动充电的大致时间(小时),上下文因充电方法而异。7.5 价格_USD浮动参考车辆价格(美元).85000.00 颜色类别主要外观颜色或饰面。午夜黑 制造国_制造类别车辆制造/组装的国家。美国 Autonomous_Level浮点自动化能力级别(例如0-5),可能包括子级别的小
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值