OKhttp是目前Android端最热门的网络请求框架之一,它以高效的优点赢得了广大开发者的喜爱,以下是OKhttp的主要特点:
1.支持HTTPS/HTTP2/WebSocket
2.内部维护线程池队列,提高并发访问的效率
3.内部维护连接池,支持多路复用,减少连接创建开销
4.透明的GZIP处理降低了下载数据的大小
5.提供拦截器链(InterceptorChain),实现request与response的分层处理
本篇文章从OKhttp的任务请求开始,来探索框架的内部机制,先来看一个OKhttp的使用例子
//同步请求
OkHttpClient client = new OkHttpClient();
Request request = new Request.Builder()
.url("http://myproject.com/helloworld.txt")
.build();
Response response = client.newCall(request).execute();
//异步请求
OkHttpClient client = new OkHttpClient();
Request request = new Request.Builder()
.url("http://myproject.com/helloworld.txt")
.build();
client.newCall(request).enqueue(new Callback() {
@Override
public void onFailure(Call call, IOException e) {
Log.d("OkHttp", "Call Failed:" + e.getMessage());
}
@Override
public void onResponse(Call call, Response response) throws IOException {
Log.d("OkHttp", "Call succeeded:" + response.message());
}
});
以上是一个同步请求和异步请求的例子,都是先通过OKHttpClient的newCall方法返回一个请求对象RealCall,如下
@Override public Call newCall(Request request) {
return RealCall.newRealCall(this, request, false /* for web socket */);
}
在RealCall中同步请求执行execute,异步请求则执行enqueue,单从方法名字上来理解的话,execute是直接执行任务的意思,enqueue则好像是先放入到某个队列中
//同步请求execute方法
@Override public Response execute() throws IOException {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
eventListener.callStart(this);
try {
//调用Dispatcher类的execute方法,把请求添加到正在执行同步任务队列中
client.dispatcher().executed(this);
//然后通过OKhttp的拦截器链策略去完成请求,返回请求结果
Response result = getResponseWithInterceptorChain();
if (result == null) throw new IOException("Canceled");
return result;
} catch (IOException e) {
eventListener.callFailed(this, e);
throw e;
} finally {
client.dispatcher().finished(this);
}
}
//通过拦截器链策略执行请求
Response getResponseWithInterceptorChain() throws IOException {
// Build a full stack of interceptors.
List<Interceptor> interceptors = new ArrayList<>();
interceptors.addAll(client.interceptors());
interceptors.add(retryAndFollowUpInterceptor);
interceptors.add(new BridgeInterceptor(client.cookieJar()));
interceptors.add(new CacheInterceptor(client.internalCache()));
interceptors.add(new ConnectInterceptor(client));
if (!forWebSocket) {
interceptors.addAll(client.networkInterceptors());
}
interceptors.add(new CallServerInterceptor(forWebSocket));
//拦截器链的执行节点,这是第一个节点,参数this就是当前的请求RealCall实例,把请求传递
//连接器链去执行
Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
originalRequest, this, eventListener, client.connectTimeoutMillis(),
client.readTimeoutMillis(), client.writeTimeoutMillis());
return chain.proceed(originalRequest);
}
//异步请求enqueue方法
@Override public void enqueue(Callback responseCallback) {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
eventListener.callStart(this);
//调用Dispatcher类的enqueue方法
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
后面任务又交给了Dispatcher去处理,Dispatcher类在OKhttp中充当了任务调度器的作用,它管理着OKhttp的线程池服务和几个队列Deque,任务的执行均由Dispatcher来调度管理
public final class Dispatcher {
//同一时间的最大请求数,就是异步请求线程的最大数量
private int maxRequests = 64;
//对同一个主机同一时间内的最大请求数
private int maxRequestsPerHost = 5;
private @Nullable Runnable idleCallback;
//线程池服务
private @Nullable ExecutorService executorService;
//几个重要的任务队列
private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();
private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();
private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();
public Dispatcher(ExecutorService executorService) {
this.executorService = executorService;
}
public Dispatcher() {
}
//创建线程池服务
public synchronized ExecutorService executorService() {
if (executorService == null) {
executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
}
return executorService;
}
...
}
Dispatcher类的几个重要属性说明:
1.readyAsyncCalls:待执行的异步任务队列
2.runningAsyncCalls:执行中的异步任务队列
3.runningSyncCalls:执行中的同步任务队列
4.executorService:线程池服务
Dispatcher中维护着一个线程池,此线程池的特点是,核心线程数为0,最大线程数为Integer.MAX_VALUE,非核心线程的最大空闲时间为60秒, 任务队列用SynchronousQueue队列,这是一个无缓冲的阻塞队列,也就是说有任务到达的时候,只要没有空闲线程,就会创建一个新的线程来执行
其实这个线程池和JDK提供的newCachedThreadPool创建的线程池是一样的,这种线程池一般适合于并发量大的轻任务,因为不缓存任务,所以它能够快速地执行任务,基本上不阻塞等待
一. 同步请求任务
在同步请求任务中,调用的是Dispatcher的execute方法
synchronized void executed(RealCall call) {
runningSyncCalls.add(call);
}
实际上这里只是把任务添加到执行中的同步任务队列中,这是一个用数组实现的双端队列,添加请求任务之后,在RealCall中直接通过getResponseWithInterceptorChain方法获取了请求结果,其实里面是通过OKhttp的拦截器链策略去完成请求的,关于OKhttp的拦截器链后面再说,任务结束后,就调用Dispatcher的finished方法
void finished(RealCall call) {
finished(runningSyncCalls, call, false);
}
private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
int runningCallsCount;
Runnable idleCallback;
synchronized (this) {
//将任务从队列中移除
if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
if (promoteCalls) promoteCalls();
runningCallsCount = runningCallsCount();
idleCallback = this.idleCallback;
}
if (runningCallsCount == 0 && idleCallback != null) {
idleCallback.run();
}
}
finished方法就是将已经执行完毕的任务从队列中移除,到此整个同步请求任务就结束了
二.异步请求任务
和同步请求不一样,异步请求是先调用RealCall的enqueue方法
@Override public void enqueue(Callback responseCallback) {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
eventListener.callStart(this);
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
然后是Dispatcher的enqueue方法,将当前请求任务RealCall和请求回调responseCallback接口封装成一个异步任务AsyncCall,传参给enqueue方法
来看看Dispatcher的enqueue方法
synchronized void enqueue(AsyncCall call) {
//默认maxRequests 为60,maxRequestsPerHost为5
if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
runningAsyncCalls.add(call);
executorService().execute(call);
} else {
//添加到等待执行的异步任务队列
readyAsyncCalls.add(call);
}
}
如果正在执行的异步请求任务数量小于maxRequests 并且单一Host的请求数小于maxRequestsPerHost,那么将任务添加到正在执行任务队列,然后将任务交由线程池去执行,否则将任务添加到待执行任务队列中等待执行
从上面得知,异步请求中会通过maxRequests来控制任务的最大并发数和通过maxRequestsPerHoset来控制单一Host的任务最大并发数,然后任务的执行交给线程池处理,任务对象是AsyncCall,所以来看AsyncCall的execute方法
@Override protected void execute() {
boolean signalledCallback = false;
try {
//通过拦截器链策略来获取请求结果
Response response = getResponseWithInterceptorChain();
if (retryAndFollowUpInterceptor.isCanceled()) {
signalledCallback = true;
responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
} else {
signalledCallback = true;
responseCallback.onResponse(RealCall.this, response);
}
} catch (IOException e) {
if (signalledCallback) {
// Do not signal the callback twice!
Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
} else {
eventListener.callFailed(RealCall.this, e);
responseCallback.onFailure(RealCall.this, e);
}
} finally {
//请求结束回调
client.dispatcher().finished(this);
}
}
和同步请求一样,还是通过OKhttp的拦截器链策略来完成请求任务并返回结果,请求结束调用Dispatcher的finished方法,但异步请求的finisheh处理和同步请求不一样
void finished(AsyncCall call) {
//注意异步请求的时候第三个参数为true,而同步请求为false
finished(runningAsyncCalls, call, true);
}
private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
int runningCallsCount;
Runnable idleCallback;
synchronized (this) {
if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
//如果异步请求,调用promoteCalls方法,下一步继续执行待执行的异步任务
if (promoteCalls) promoteCalls();
runningCallsCount = runningCallsCount();
idleCallback = this.idleCallback;
}
if (runningCallsCount == 0 && idleCallback != null) {
idleCallback.run();
}
}
关键是promoteCalls方法,一个异步任务执行完毕以后,此方法将触发下一个待执行任务的执行
private void promoteCalls() {
if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.
for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
AsyncCall call = i.next();
//从待执行任务队列中取出任务,交给线程池去执行
if (runningCallsForHost(call) < maxRequestsPerHost) {
i.remove();
runningAsyncCalls.add(call);
executorService().execute(call);
}
if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
}
}
三.总结
从上面的分析可以看到,OKhttp的任务主要在Dispatcher中进行调度分发,然后不管是同步请求还是异步请求,它们都是通过OKhttp的拦截器策略去完成的,所以读完本篇文章,肯定留下一个疑问,OKhttp的拦截器链又是怎么实现的?
下一篇分析OKhttp拦截器链的实现原理