这TM欢乐
我打了两次。。。
最后卡空间。。。
日嘛
最后还被liuchenrui大爷嘲讽了一发
可合并的线段树
常数大的吓人
别问我数组为什么开那么小 不卡小点就挂了(面向数据编程大法好
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<map>
#include<queue>
#include<algorithm>
using namespace std;
char c;
inline void read(int &a)
{
a=0;do c=getchar();while(c<'0'||c>'9');
while(c<='9'&&c>='0')a=(a<<3)+(a<<1)+c-'0',c=getchar();
}
struct Seg
{
Seg*lc,*rc;
int data;
double S;
}*Tree[100001];
const
int Maxn=5363848;
Seg *Cache[Maxn];
Seg C[Maxn];
int ttt=Maxn-1;
Seg Ba;
int ans=1<<29;
inline void Bg()
{
for(int i=0;i<Maxn;i++)
Cache[i]=C+i;
Ba.S=0,Ba.lc=Ba.rc=NULL,Ba.data=0;
}
inline Seg *New2()
{
*Cache[ttt]=Ba;
ans=min(ans,ttt-1);
return Cache[ttt--];
}
inline void Del(Seg *a){if(a)Cache[++ttt]=a;}
map<int,int>Fir;
int Q[200001];
int QQ[180001];
int tot,cnt;
double Lg[180001];
struct SS{int c,x,a,b,k,y;}L[400001];
int F[180001],con;
int f(int x)
{return F[x]=(F[x]==x?x:f(F[x]));}
inline void Union(int a,int b)
{F[f(a)]=F[f(b)];}
Seg*Build(int l,int r,int pla)
{
if(pla==-1)
pla++,pla--;
Seg*New=New2();
if(l>pla||r<pla)
return New;
int Mid=l+r>>1;
if(l^r)
{
New->lc=Build(l,Mid,pla);
New->rc=Build(Mid+1,r,pla);
}
if(pla>=l&&pla<=r)
New->S=Lg[pla],New->data=1;
return New;
}
Seg*Merge(Seg *a,Seg *b)
{
Seg *c=New2();
if(a->lc)
{
if(a->lc->data==0)
c->lc=b->lc;
else if(b->lc->data==0)
c->lc=a->lc;
else c->lc=Merge(a->lc,b->lc);
if(a->rc->data==0)
c->rc=b->rc;
else if(b->rc->data==0)
c->rc=a->rc;
else c->rc=Merge(a->rc,b->rc);
c->S=c->lc->S+c->rc->S;
c->data=c->rc->data+c->lc->data;
}
else
{
c->S=a->S+b->S;
c->data=a->data+b->data;
}
Del(a),Del(b);
return c;
}
int Query(Seg*Cur,int l,int r,int pla)
{
if(r<=pla)return Cur->data;
if(Cur->data==0)return 0;
if(!Cur->lc)
{
Cur->lc=New2();
Cur->rc=New2();
}
int res=Query(Cur->lc,l,l+r>>1,pla);
if((l+r>>1)<pla)
res+=Query(Cur->rc,(l+r>>1)+1,r,pla);
return res;
}
Seg *ModifyMin(Seg *a,int l,int r,int pla,int con)
{
if(l>pla)return a;
if(r<pla)
return Build(l,r,-1);
else if(l^r)
{
if(!a->lc)
{
a->lc=New2();
a->rc=New2();
}
Seg *Ol=a->lc;
a->lc=ModifyMin(a->lc,l,l+r>>1,pla,con);
if(Ol!=a->lc)Del(Ol);
Ol=a->rc;
a->rc=ModifyMin(a->rc,(l+r>>1)+1,r,pla,con);
if(Ol!=a->rc)Del(Ol);
a->data=a->lc->data+a->rc->data;
a->S=a->lc->S+a->rc->S;
}
else a->data+=con,a->S=a->data*Lg[pla];
return a;
}
Seg *ModifyMax(Seg *a,int l,int r,int pla,int con)
{
if(r<pla)return a;
if(l>pla)
return Build(l,r,-1);
else if(l^r)
{
if(!a->lc)
{
a->lc=New2();
a->rc=New2();
}
Seg *Ol=a->lc;
a->lc=ModifyMax(a->lc,l,l+r>>1,pla,con);
if(Ol!=a->lc)Del (Ol);
Ol=a->rc;
a->rc=ModifyMax(a->rc,(l+r>>1)+1,r,pla,con);
if(Ol!=a->rc)Del (Ol);
a->data=a->lc->data+a->rc->data;
a->S=a->lc->S+a->rc->S;
}
else a->data+=con,a->S=a->data*Lg[pla];
return a;
}
int Find(Seg*Cur,int l,int r,int con)
{
if(!(l^r))return l;
if(Cur->lc->data>=con)
return Find(Cur->lc,l,l+r>>1,con);
return Find(Cur->rc,(l+r>>1)+1,r,con-Cur->lc->data);
}
int main()
{
int m,sum=0;
read(m);
Bg();
for(int i=1;i<=m;i++)
{
read(L[i].c);
if(L[i].c==1)read(L[i].x),Q[++tot]=L[i].x;
if(L[i].c==2)read(L[i].a),read(L[i].b);
if(L[i].c==3)read(L[i].a),read(L[i].x),Q[++tot]=L[i].x;
if(L[i].c==4)read(L[i].a),read(L[i].x),Q[++tot]=L[i].x;
if(L[i].c==5)read(L[i].a),read(L[i].k);
if(L[i].c==6)read(L[i].a),read(L[i].b);
if(L[i].c==7)read(L[i].a);
if(L[i].c==8)read(L[i].a),read(L[i].b);
if(L[i].c==9)read(L[i].a);
}
sort(Q+1,Q+1+tot);
for(int i=1;i<=tot;i++)
if(Q[i]!=Q[i-1]||i==1)
QQ[Fir[Q[i]]=++sum]=Q[i],Lg[sum]=log(Q[i]);
Tree[0]=New2();
// Tree[0]->l=1,Tree[0]->r=sum+1;
for(int i=1;i<=m;i++)
{
int a,b,x,k,c;
if(i==12)
i++,i--;
c=L[i].c;
a=L[i].a;
b=L[i].b;
x=L[i].x;
k=L[i].k;
if(c==1)
{
Tree[++con]=Build(1,sum+1,Fir[x]);
F[con]=con;
}
if(c==2)
{
if(f(a)^f(b))
{
Tree[f(b)]=Merge(Tree[f(a)],Tree[f(b)]);
Union(a,b);
}
}
if(c==3)
{
int t;
if(Fir[x]!=1)
t=Query(Tree[f(a)],1,sum+1,Fir[x]-1);
else t=0;
Tree[f(a)]=ModifyMin(Tree[f(a)],1,sum+1,Fir[x],t);
}
if(c==4)
{
int tp=Fir[x];
int t=Tree[f(a)]->data-Query(Tree[f(a)],1,sum+1,tp);
Tree[f(a)]=ModifyMax(Tree[f(a)],1,sum+1,tp,t);
}
if(c==5)
{
Seg *I;
I=Tree[f(a)];
int t,L=1,R=sum+1,Mid,ans=sum;
ans=Find(I,1,R,k);
printf("%d\n",QQ[ans]);
}
if(c==6)
{
double x1,y1;
x1=Tree[f(a)]->S;
y1=Tree[f(b)]->S;
puts(x1>y1?"1":"0");
}
if(c==7)
{
printf("%d\n",Tree[f(a)]->data);
}
}
return 0;
}