hdu 3071 ( 概率dp )

本文探讨了如何使用概率算法来预测在单场淘汰赛中哪支队伍最有可能获胜,涉及比赛规则、输入格式、算法实现及输出解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://poj.org/problem?id=3071

Football
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 3146 Accepted: 1592

Description

Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.

Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

Input

The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, thejth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.

Output

The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.

Sample Input

2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1

Sample Output

2

Hint

In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:

P(2 wins) P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4)
p21p34p23 + p21p43p24
= 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396.

The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.

Source

思路:这一阵狂刷概率dp~

由淘汰赛的规则可以推出来 要是有  2^n个队伍,那么就肯定有n场比赛;

那么 dp[i][j]  表示第i场比赛 j队能赢的概率;

#include <iostream>
#include <string.h>
#include <string>
#include <cstdio>
#include <cmath>
#include <algorithm>
const int N=(1<<7)+5;
using namespace std;
double dp[10][N];
double p[N][N];

int main()
{
    int n;
    while(cin>>n)
    {
      if(n==-1)break;
      int top=1<<n;
      for(int i=0;i<top;i++)
         for(int j=0;j<top;j++)
           scanf("%lf",&p[i][j]);
      memset(dp,0,sizeof(dp));
      for(int i=0;i<top;i++)dp[0][i]=1;

      for(int i=1;i<=n;i++)
         for(int j=0;j<top;j++)
            for(int k=0;k<top;k++)
            {
              if(((j>>(i-1))^1)!=k>>(i-1))continue;
              dp[i][j]+=dp[i-1][k]*dp[i-1][j]*p[j][k];
            }
     int flag=-1;
     double ans=-1;

     for(int i=0;i<top;i++)
     {
       if(dp[n][i]>ans)
       {
         ans=dp[n][i];
         flag=i;
       }
     }
     printf("%d\n",flag+1);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值