本文主要从几个方面分析Handler:
1.分析Handler的源码
2.简单介绍消息机制中几个成员:Message、MesageQueue、Lopper
3. Handler、Message、MesageQueue、Lopper之间的关系
一.Handler的源码分析:
上篇文章已经对Handler的使用做了介绍,这里将结合源码进行分析:
1.首先看下Handler的构造方法:
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread " + Thread.currentThread()
+ " that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
我们直接看:
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread " + Thread.currentThread()
+ " that has not called Looper.prepare()");
}
获取当前线程的Looper对象,如果未获取到就抛出异常,这就是上篇文章中在子线程直接new出 Handler时报错的原因。
mQueue = mLooper.mQueue;这句用来这里绑定消息队列(MesageQueue)。
2.接下来我们看下 Handler发送消息的方法:
(1)sendMessage():
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}
调用了一个发送延时消息的方法,延时为0:
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
获取消息队列,如果消息队列为空,抛出异常返回false,消息队列不为null执行enqueueMessage:
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);}
将Handler发送的消息保存到消息队列中。
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;}
(2)post()和postDelayed()方法:
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
}
public final boolean postDelayed(Runnable r, long delayMillis)
{
return sendMessageDelayed(getPostMessage(r), delayMillis);
}
从两个方法的源码可以看到,post和postDelayed是发送Runnable到消息队列,两个调用的方法都是一样的只是post默认延时为0.之后的发送runnable到消息队列中与sendMessage 是一样的。
接下来我们看下Handler方法中另一个重要的方法:
removeCallbacksAndMessages():
public final void removeCallbacksAndMessages(Object token) {
mQueue.removeCallbacksAndMessages(this, token);
}
里面调用的是MessagQueue消息队列中的方法:意思就是移除当前handler关联的所有消息,这个方法最好在activity销毁时调用,防止造成内存泄漏。
到这里Handler的作用就已经清楚了,发送消息到消息队列(MessageQueue),这边就涉及到消息机制的两个成员Message和MessageQueue:
(1)Message:
Handler接收与处理的消息对象
(2)MessageQueue:
存储消息的队列,MessageQueue这里不做源码分析,其实通过看源码可以看到,MessageQueue底层并不是采用队列的方式,而是采用单链表的数据结构来维护消息队列。
那么是通过什么来管理MessageQueue的呢这里就涉及到消息机制的最后一个成员Lopper,
二.Looper:
Looper从MessageQueue不断循环取出Message,从上面知道Handler的构造方法中绑定了主线程的looper(主线程在创建时就会默认初始化looper),所以Handler的执行是依赖于Looper所在线程决定的,而子线程默认是没有Looper的所以如果要在子线程中使用Handler就要创建Looper。
来看下Looper的源码:
Looper的成员变量:
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
private static Looper sMainLooper; // guarded by Looper.class
final MessageQueue mQueue;
final Thread mThread;
其中MessageQueue消息队列、Thread线程都熟悉,ThreadLocal会比较少见,这里做个简单的解释:
ThreadLocal
实现了一个线程相关的存储,即每个线程都有自己独立的变量。所有的线程都共享者这一个ThreadLocal
对象,并且当一个线程的值发生改变之后,不会影响其他的线程的值。
接下来我们看下初始化Looper的源码:
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
我们看到首先判断当前线程是否已经存在Looper,如果存在就会抛出异常“每个线程只能存在一个Looper”,如果不存在就new Looper,调用Looper的构造方法:
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
接下来我们看Looper的Looper.loop()方法:
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// Allow overriding a threshold with a system prop. e.g.
// adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
final int thresholdOverride =
SystemProperties.getInt("log.looper."
+ Process.myUid() + "."
+ Thread.currentThread().getName()
+ ".slow", 0);
boolean slowDeliveryDetected = false;
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long traceTag = me.mTraceTag;
long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
if (thresholdOverride > 0) {
slowDispatchThresholdMs = thresholdOverride;
slowDeliveryThresholdMs = thresholdOverride;
}
final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
final boolean needStartTime = logSlowDelivery || logSlowDispatch;
final boolean needEndTime = logSlowDispatch;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
final long dispatchEnd;
try {
msg.target.dispatchMessage(msg);
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logSlowDelivery) {
if (slowDeliveryDetected) {
if ((dispatchStart - msg.when) <= 10) {
Slog.w(TAG, "Drained");
slowDeliveryDetected = false;
}
} else {
if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
msg)) {
// Once we write a slow delivery log, suppress until the queue drains.
slowDeliveryDetected = true;
}
}
}
if (logSlowDispatch) {
showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
从源码中我们看出 Looper me = myLooper()、MessageQueue queue = me.mQueue;获取到Looper和MessageQueue后就开始无限循环
for (;;) {
Message msg = queue.next(); // might block
不断的从MessageQueue中取出消息,当获取到Message后就调用msg.target.dispatchMessage(msg);进行处理。
所有Looper最主要两个方法:
1.prepare()初始化Looper
2.loop()开始无限循环取消息。
总结:
Android消息机制设计四个成员:Handler、Message、MessageQueue、Looper
Message:消息对象
MessageQueue:存储消息的消息队列,底层采用单链表的数据结构维护消息。
Looper:消息循环,无限循环方式查找消息,有就处理消息,没有就等待,ui线程初始化时默认创建Looper,
所以可以在主线程中new Handler,而子线程中默认没有Looper,在子线程中要new Handler需要先调用Looper.prepare或者获取主线程的looper:Looper.getMainLooper()。
Handler:发送消息和接收消息,Handler的处理逻辑依赖在Looper所在线程。