深度学习在美团搜索广告排序的应用实践

本文详细介绍了深度学习模型在美团搜索广告点击率预估(CTR)中的应用与优化,涵盖从传统机器学习模型到深度学习模型的演进,包括特征工程、模型迭代、工程优化等方面的内容。

一、前言

在计算广告场景中,需要平衡和优化三个参与方——用户、广告主、平台的关键指标,而预估点击率CTR(Click-through Rate)和转化率CVR(Conversion Rate)是其中非常重要的一环,准确地预估CTR和CVR对于提高流量变现效率,提升广告主ROI(Return on Investment),保证用户体验等都有重要的指导作用。

传统的CTR/CVR预估,典型的机器学习方法包括人工特征工程 + LR(Logistic Regression)1、GBDT(Gradient Boosting Decision Tree)2 + LR、FM(Factorization Machine)3和FFM(Field-aware Factorization Machine)4等模型。相比于传统机器学习方法,深度学习模型近几年在多领域多任务(图像识别、物体检测、翻译系统等)的突出表现,印证了神经网络的强大表达能力,以及端到端模型有效的特征构造能力。同时各种开源深度学习框架层出不穷,美团集团数据平台中心也迅速地搭建了GPU计算平台,提供GPU集群,支持TensorFlow、MXNet、Caffe等框架,提供数据预处理、模型训练、离线预测、模型部署等功能,为集团各部门的策略算法迭代提供了强有力的支持。

美团海量的用户与商家数据,广告复杂的场景下众多的影响因素,为深度学习方法的应用落地提供了丰富的场景。本文将结合广告特殊的业务场景,介绍美团搜索广告场景下深度学习的应用和探索。主要包括以下两大部分:

  • CTR/CVR预估由机器学习向深度学习迁移的模型探索
  • CTR/CVR预估基于深度学习模型的线下训练/线上预估的工程优化

二、从机器学习到深度学习的模型探索

2.1 场景与特征

美团搜索广告业务囊括了关键词搜索、频道筛选等业务,覆盖了美食、休娱、酒店、丽人、结婚、亲子等200多种应用场景,用户需求具有多样性。同时O2O模式下存在地理位置、时间等独特的限制。

结合上述场景,我们抽取了以下几大类特征:

  • 用户特征
    • 人口属性:用户年龄,性别,职业等。
    • 行为特征:对商户/商圈/品类的偏好(实时、历史),外卖偏好,活跃度等。
    • 建模特征:基于用户的行为序列建模产生的特征等。
  • 商户特征
    • 属性特征:品类,城市,商圈,品牌,价格,促销,星级,评论等。
    • 统计特征:不同维度/时间粒度的统计特征等。
    • 图像特征:类别,建模特征等。
    • 业务特征:酒店房型等。
  • Query特征
    • 分词,意图,与商户相似度,业务特征等。
  • 上下文特征
    • 时间,距离,地理位置,请求品类,竞争情况等。
    • 广告曝光位次。

结合美团多品类的业务特点及O2O模式独特的需求,着重介绍几个业务场景以及如何刻画:

  • 用户的消费场景
    • 附近”请求:美团和大众点评App中,大部分用户发起请求为“附近”请求,即寻找附近的美食、酒店、休闲娱乐场所等。因此给用户返回就近的商户可以起到事半功倍的效果。“请求到商户的距离”特征可以很好地刻画这一需求。
    • 指定区域(商圈)”请求:寻找指定区域的商户,这个区域的属性可作为该流量的信息表征。
    • 位置”请求:用户搜索词为某个位置,比如“五道口”,和指定区域类似,识别位置坐标,计算商户到该坐标的距离。
    • 家/公司”: 用户部分的消费场所为“家” 或 “公司”,比如寻找“家”附近的美食,在“公司”附近点餐等,根据用户画像得到的用户“家”和“公司”的位置来识别这种场景。
  • 多品类
    • 针对美食、酒店、休娱、丽人、结婚、亲子等众多品类的消费习惯以及服务方式,将数据拆分成三大部分,包括美食、酒店、综合(休娱、丽人、结婚、亲子等)。其中美食表达用户的餐饮需求,酒店表达用户的旅游及住宿需求,综合表达用户的其他生活需求。
  • 用户的行为轨迹
    • 实验中发现用户的实时行为对表达用户需求起到很重要的作用。比如用户想找个餐馆聚餐,先筛选了美食,发现附近有火锅、韩餐、日料等店,大家对火锅比较感兴趣,又去搜索特定火锅等等。用户点击过的商户、品类、位置,以及行为序列等都对用户下一刻的决策起到很大作用。

2.2 模型

搜索广告CTR/CVR预估经历了从传统机器学习模型到深度学习模型的过渡。下面先简单介绍下传统机器学习模型(GBDT、LR、FM & FFM)及应用,然后再详细介绍在深度学习模型的迭代。

GBDT

GBDT又叫MART(Multiple Additive Regression Tree),是一种迭代的决策树算法。它由多棵决策树组成,所有树的结论累加起来作为最终答案。它能自动发现多种有区分性的特征以及特征组合,并省去了复杂的特征预处理逻辑。Facebook实现GBDT + LR5的方案,并取得了一定的成果。

LR

\[ y(\mathbf{x}) = sigmoid(w_0+ \sum_{i=1}^n w_i x_i) \]

LR可以视作单层单节点的“DNN”, 是一种宽而不深的结构,所有的特征直接作用在最后的输出结果上。模型优点是简单、可控性好,但是效果的好坏直接取决于特征工程的程度,需要非常精细的连续型、离散型、时间型等特征处理及特征组合。通常通过正则化等方式控制过拟合。

FM & FFM

FM可以看做带特征交叉的LR,如下图所示:

从神经网络的角度考虑,可以看做下图的简单网络搭建方式:

模型覆盖了LR的宽模型结构,同时也引入了交叉特征,增加模型的非线性,提升模型容量,能捕捉更多的信息,对于广告CTR预估等复杂场景有更好的捕捉。

在使用DNN模型之前,搜索广告CTR预估使用了FFM模型,FFM模型中引入field概念,把\( n \)个特征归属到\( f \)个field里,得到\( nf \)个隐向量的二次项,拟合公式如下:

\[ y(\mathbf{x}) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_{i, f_j}, \mathbf{v}_{j, f_i} \rangle x_i x_j \]

上式中,\( f_j \)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值