How JavaScript Timers Work[z]

本文深入探讨JavaScript定时器的工作原理,包括setTimeout与setInterval的区别及内部执行机制。通过实例说明了单线程环境下异步事件的排队与执行过程。

From: http://ejohn.org/blog/how-javascript-timers-work/

 

At a fundamental level it's important to understand how JavaScript timers work. Often times they behave unintuitively because of the single thread which they are in. Let's start by examining the three functions to which we have access that can construct and manipulate timers.

  • var id = setTimeout(fn, delay); - Initiates a single timer which will call the specified function after the delay. The function returns a unique ID with which the timer can be canceled at a later time.
  • var id = setInterval(fn, delay); - Similar to setTimeout but continually calls the function (with a delay every time) until it is canceled.
  • clearInterval(id);, clearTimeout(id); - Accepts a timer ID (returned by either of the aforementioned functions) and stops the timer callback from occurring.

In order to understand how the timers work internally there's one important concept that needs to be explored: timer delay is not guaranteed. Since all JavaScript in a browser executes on a single thread asynchronous events (such as mouse clicks and timers) are only run when there's been an opening in the execution. This is best demonstrated with a diagram, like in the following:


(Click to view full size diagram)

 

There's a lot of information in this figure to digest but understanding it completely will give you a better realization of how asynchronous JavaScript execution works. This diagram is one dimensional: vertically we have the (wall clock) time, in milliseconds. The blue boxes represent portions of JavaScript being executed. For example the first block of JavaScript executes for approximately 18ms, the mouse click block for approximately 11ms, and so on.

Since JavaScript can only ever execute one piece of code at a time (due to its single-threaded nature) each of these blocks of code are "blocking" the progress of other asynchronous events. This means that when an asynchronous event occurs (like a mouse click, a timer firing, or an XMLHttpRequest completing) it gets queued up to be executed later (how this queueing actually occurs surely varies from browser-to-browser, so consider this to be a simplification).

To start with, within the first block of JavaScript, two timers are initiated: a 10ms setTimeout and a 10ms setInterval. Due to where and when the timer was started it actually fires before we actually complete the first block of code. Note, however, that it does not execute immediately (it is incapable of doing that, because of the threading). Instead that delayed function is queued in order to be executed at the next available moment.

Additionally, within this first JavaScript block we see a mouse click occur. The JavaScript callbacks associated with this asynchronous event (we never know when a user may perform an action, thus it's consider to be asynchronous) are unable to be executed immediately thus, like the initial timer, it is queued to be executed later.

After the initial block of JavaScript finishes executing the browser immediately asks the question: What is waiting to be executed? In this case both a mouse click handler and a timer callback are waiting. The browser then picks one (the mouse click callback) and executes it immediately. The timer will wait until the next possible time, in order to execute.

Note that while mouse click handler is executing the first interval callback executes. As with the timer its handler is queued for later execution. However, note that when the interval is fired again (when the timer handler is executing) this time that handler execution is dropped. If you were to queue up all interval callbacks when a large block of code is executing the result would be a bunch of intervals executing with no delay between them, upon completion. Instead browsers tend to simply wait until no more interval handlers are queued (for the interval in question) before queuing more.

We can, in fact, see that this is the case when a third interval callback fires while the interval, itself, is executing. This shows us an important fact: Intervals don't care about what is currently executing, they will queue indiscriminately, even if it means that the time between callbacks will be sacrificed.

Finally, after the second interval callback is finished executing, we can see that there's nothing left for the JavaScript engine to execute. This means that the browser now waits for a new asynchronous event to occur. We get this at the 50ms mark when the interval fires again. This time, however, there is nothing blocking its execution, so it fires immediately.

Let's take a look at an example to better illustrate the differences between setTimeout and setInterval.

  setTimeout ( function ( ) {
    /* Some long block of code... */
    setTimeout (arguments. callee, 10 );
  }, 10 );
 
  setInterval ( function ( ) {
    /* Some long block of code... */
  }, 10 );

These two pieces of code may appear to be functionally equivalent, at first glance, but they are not. Notably the setTimeout code will always have at least a 10ms delay after the previous callback execution (it may end up being more, but never less) whereas the setInterval will attempt to execute a callback every 10ms regardless of when the last callback was executed.

There's a lot that we've learned here, let's recap:

  • JavaScript engines only have a single thread, forcing asynchronous events to queue waiting for execution.
  • setTimeout and setInterval are fundamentally different in how they execute asynchronous code.
  • If a timer is blocked from immediately executing it will be delayed until the next possible point of execution (which will be longer than the desired delay).
  • Intervals may execute back-to-back with no delay if they take long enough to execute (longer than the specified delay).

All of this is incredibly important knowledge to build off of. Knowing how a JavaScript engine works, especially with the large number of asynchronous events that typically occur, makes for a great foundation when building an advanced piece of application code.

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值