Three Discretization Methods

本文详细阐述了如何使用熵作为指导,选择最优的二元离散化边界来离散化特征,该过程可以递归应用于生成多个区间。熵作为监督方法的核心,在划分数据集时考虑了类标签信息。同时,介绍了等频区间和等宽区间划分两种无监督离散化方法,它们不依赖于类标签。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

If we are given a set of instances S, a feature A, and a partition boundary T, the class information entropy of the partition induced by T, denoted E(A,T,S) is given by:

      

For a given feature A, the boundary Tmin which minimizes the entropy function over all possible partition boundaries is selected as a binary discretization boundary. This method can then be applied recursively to both of the partitions induced by Tmin until some stopping condition is achieved, thus creating multiple intervals on the feature A.


Discretization based on entropy is supervised method because it needs the class lables of instances.


Equal frequency Intervals, divides a continuous variable into k bins where (given m instances) each bin contains m/k (possibly duplicated) adjacent values.

Both equal frequency intervals method and equal width interval binning method are unsupervised discretization methods.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值