poj1113 Wall 凸包

本文介绍了一个关于计算围绕国王城堡的最小周长墙的问题。通过使用几何和算法的知识,文章提供了一种解决方案来确定满足特定条件的墙的最小长度。
Wall
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 37484 Accepted: 12769

Description

Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall. 

Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements. 

The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle. 

Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Sample Output

1628

Hint

结果四舍五入就可以了



凸包题目,题目不难理解,就是求走一周的路程。

结果等于,凸包周长+一个完整的圆周长。

因为走一圈,经过拐点时,所形成的扇形的内角和是360度,故一个完整的圆。


注意精度,四舍五入!=(int)类型强制转换。。。


//poj1113
#include<iostream>
#include<vector>
#include<cmath>
#include<algorithm>
#include<cstdio>
using namespace std;
#define esp 1e-6
#define PI acos(-1)

int Sign(double x){//判断x大于0,小于0,还是等于0 
	return fabs(x)<esp?0:x>0?1:-1;
}

struct Point{ //存点 
	double x,y;
	Point(){
	}
	Point(double xx,double yy):x(xx),y(yy) { }

	Point operator-(const Point & p) const {
		return Point(x-p.x,y-p.y);
	}

	bool operator <(const Point & p) const {
		if( y < p.y)
			return true;
		else if( y > p.y)
			return false;
		else
			return x < p.x;
	}
};

typedef Point Vector;
double Cross(const Vector & v1, const Vector & v2){//叉积
	return v1.x * v2.y - v2.x * v1.y;
}
double Distance(const Point & p1,const Point & p2){//求距离 
	return sqrt( (p1.x - p2.x)*(p1.x - p2.x) + (p1.y-p2.y)*(p1.y-p2.y));
}

struct Comp { //用来定义极角排序规则的函数对象
	Point p0; //以p0为原点进行极角排序,极角相同的,离p0近算小
	Comp(const Point & p):p0(p.x,p.y) { }
	bool operator ()(const Point & p1,const Point & p2) const {
		int s = Sign( Cross(p1-p0,p2-p0));
		if( s > 0)
			return true;
		else if( s < 0)
			return false;
		else {
			if( Distance(p0,p1)<Distance(p0,p2))
				return true;
			else
				return false;
		}
	}
};

int Graham(vector<Point> & points,vector<Point> & stack) {//求凸包 
	//points是点集合
	if( points.size() < 3)
		return 0; //返回凸包顶点数
	stack.clear();
	//先按坐标排序,最左下的放到points[0]
	sort(points.begin(),points.end());
	//以points[0] 为原点进行极角排序
	sort(points.begin()+1,points.end(),Comp(points[0]));
	stack.push_back(points[0]);
	stack.push_back(points[1]);
	stack.push_back(points[2]);
	for(int i = 3; i< points.size(); ++i) {
		while(true) {
			Point p2 = * (stack.end()-1);
			Point p1 = * (stack.end()-2);
			if( Sign(Cross(p2-p1,points[i]-p2) <= 0))
				//p2->points[i]没有向左转,就让p2出栈
				stack.pop_back();
			else
				break;
		}
		stack.push_back(points[i]);
	}
	return stack.size();
}

int main(){
    double N,L,n,l;
    Point p;
    vector<Point> points;
	vector<Point> stack;
	double res=0;
    while(scanf("%lf%lf",&N,&L)!=EOF){
    	points.clear();
    	stack.clear();
    	for(int i=0;i<N;i++){
    		scanf("%lf %lf",&n,&l);
    		p.x=n,p.y=l;
        	points.push_back(p);
		}
    	
		int size = Graham(points,stack);
    
        for(int i=0;i<size-1;i++)//求凸包周长 
          res+=Distance(stack[i],stack[i+1]);
        res+=Distance(stack[0],stack[size-1]);
        
        res+=2*PI*L;
        printf("%d\n",(int)(res+0.5));
    }    
    return 0;
}  


基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
基于粒子群算法优化Kmeans聚类的居民用电行为分析研究(Matlb代码实现)内容概要:本文围绕基于粒子群算法(PSO)优化Kmeans聚类的居民用电行为分析展开研究,提出了一种结合智能优化算法与传统聚类方法的技术路径。通过使用粒子群算法优化Kmeans聚类的初始聚类中心,有效克服了传统Kmeans算法易陷入局部最优、对初始值敏感的问题,提升了聚类的稳定性和准确性。研究利用Matlab实现了该算法,并应用于居民用电数据的行为模式识别与分类,有助于精细化电力需求管理、用户画像构建及个性化用电服务设计。文档还提及相关应用场景如负荷预测、电力系统优化等,并提供了配套代码资源。; 适合人群:具备一定Matlab编程基础,从事电力系统、智能优化算法、数据分析等相关领域的研究人员或工程技术人员,尤其适合研究生及科研人员。; 使用场景及目标:①用于居民用电行为的高效聚类分析,挖掘典型用电模式;②提升Kmeans聚类算法的性能,避免局部最优问题;③为电力公司开展需求响应、负荷预测和用户分群管理提供技术支持;④作为智能优化算法与机器学习结合应用的教学与科研案例。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解PSO优化Kmeans的核心机制,关注参数设置对聚类效果的影响,并尝试将其应用于其他相似的数据聚类问题中,以加深理解和拓展应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值