Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 247988 Accepted Submission(s): 58604
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
题目大意就是给定一组数,找到连续的且和最大的一组数,输出和及开始结束的位置。
#include<iostream>
using namespace std;
int main()
{
int i,j,k,t,n,m;
int dp[100005];
scanf("%d",&t);
for(k=1;k<=t;k++)
{
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d",&dp[i]);
int sum=0,maxn=-11111,first=1,last=0,flag=1;
for(i=1;i<=n;i++)
{
sum+=dp[i];
if(sum>maxn)
{
maxn=sum;
first=flag;
last=i;
}
if(sum<0)
{
sum=0;
flag=i+1;
}
}
printf("Case %d:\n%d %d %d\n",k,maxn,first,last);
if(k!=t)
printf("\n");
}
return 0;
}