【OpenCV】50 二值图像分析 – 矩形面积与弧长

本文介绍了一种使用OpenCV对二值图像进行分析的方法,通过计算轮廓的面积和弧长,实现了对不同大小对象的过滤,找到感兴趣的目标区域。详细展示了从读取图像到轮廓分析的完整过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

50 二值图像分析 – 矩形面积与弧长

代码

import cv2 as cv
import numpy as np

def canny_demo(image):
    t = 80
    canny_output = cv.Canny(image, t, t * 2)
    cv.imshow("canny_output", canny_output)
    return canny_output

src = cv.imread("../images/zhifang_ball.png")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", src)
binary = canny_demo(src)
k = np.ones((3, 3), dtype=np.uint8)
binary = cv.morphologyEx(binary, cv.MORPH_DILATE, k)

# 轮廓发现
contours, hierarchy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
for c in range(len(contours)):
    # x, y, w, h = cv.boundingRect(contours[c]);
    # cv.drawContours(src, contours, c, (0, 0, 255), 2, 8)
    # cv.rectangle(src, (x, y), (x+w, y+h), (0, 0, 255), 1, 8, 0);
    area = cv.contourArea(contours[c])
    arclen = cv.arcLength(contours[c], True)
    if area < 100 or arclen < 100:
        continue
    rect = cv.minAreaRect(contours[c])
    cx, cy = rect[0]
    box = cv.boxPoints(rect)
    box = np.int0(box)
    cv.drawContours(src,[box],0,(0,0,255),2)
    cv.circle(src, (np.int32(cx), np.int32(cy)), 2, (255, 0, 0), 2, 8, 0)

# 显示
cv.imshow("contours_analysis", src)
cv.waitKey(0)
cv.destroyAllWindows()

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

解释

对图像二值图像的每个轮廓,我们可以计算轮廓的弧长与面积,根据轮廓的面积与弧长可以实现对不同大小对象的过滤,寻找到我们感兴趣的roi区域,这个也是图像二值分析的任务之一。OpenCV对轮廓点集计算面积的API函数如下

retval = cv.contourArea(contour[, oriented])

计算轮廓的面积,其原理是基于格林公式。
参数contour表示输入的轮廓点集
参数oriented默认是false返回的面积是正数,如果方向参数为true表示会根据是顺时针或者逆时针方向返回正值或者负值面积。

retval = cv.arcLength(curve, closed)

计算轮廓曲线的弧长。
参数curve表示输入的轮廓点集
参数closed默认表示是否闭合区域


所有内容均来源于贾志刚老师的知识星球——OpenCV研习社,本文为个人整理学习,已获得贾老师授权,有兴趣、有能力的可以加入贾老师的知识星球进行深入学习。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值