【OpenCV】46 二值图像联通组件寻找

本文介绍了一种基于OpenCV的二值图像连通组件标记算法实现,通过扫描图像的每个像素点,将像素值相同且相互连通的区域划分为相同的组,最终得到图像中所有的像素连通组件。实验使用了rice.png图像,展示了如何应用该算法并统计连通组件的数量。

46 二值图像联通组件寻找

代码

import cv2 as cv
import numpy as np

def connected_components_demo(src):
    src = cv.GaussianBlur(src, (3, 3), 0)
    gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
    ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
    cv.imshow("binary", binary)

    output = cv.connectedComponents(binary, connectivity=8, ltype=cv.CV_32S)
    num_labels = output[0]
    labels = output[1]
    colors = []
    for i in range(num_labels):
        b = np.random.randint(0, 256)
        g = np.random.randint(0, 256)
        r = np.random.randint(0, 256)
        colors.append((b, g, r))

    colors[0] = (0, 0, 0)
    h, w = gray.shape
    image = np.zeros((h, w, 3), dtype=np.uint8)
    for row in range(h):
        for col in range(w):
            image[row, col] = colors[labels[row, col]]

    cv.imshow("colored labels", image)
    count = num_labels - 1
    print("total rice : ", count)
    return image,count


src = cv.imread("../images/rice.png")
h, w = src.shape[:2]
dst, count = connected_components_demo(src)
result = np.zeros([h, w*2, 3], dtype=src.dtype)
result[0:h,0:w,:] = src
result[0:h,w:2*w,:] = dst
cv.putText(result, "input", (10, 30), cv.FONT_ITALIC, 1.0, (0, 0, 255), 2)
cv.putText(result, "colored labels(total rice: %s)"%count, (w+10, 30), cv.FONT_ITALIC, 1.0, (0, 0, 255), 2)
cv.imshow("result", result)

cv.waitKey(0)
cv.destroyAllWindows()

实验结果

在这里插入图片描述

解释

连接组件标记算法(connected component labeling algorithm)是图像分析中最常用的算法之一,算法的实质是扫描二值图像的每个像素点,对于像素值相同的而且相互连通分为相同的组(group),最终得到图像中所有的像素连通组件。扫描的方式可以是从上到下,从左到右,对于一幅有N个像素的图像来说,最大连通组件个数为N/2。扫描是基于每个像素单位,OpenCV中进行连通组件扫码调用的时候必须保证背景像素是黑色、前景像素是白色。最常见的连通组件扫码有如下两类算法:

  1. 一步法,基于图的搜索算法
  2. 两步法、基于扫描与等价类合并算法

OpenCV中支持连通组件扫描的API有两个,一个是带统计信息一个不带统计信息。
不带统计信息的API及其解释如下:

retval, labels =	cv.connectedComponents(image[, labels[, connectivity[, ltype]]])
  • image: 输入二值图像,黑色背景
  • labels: 输出的标记图像,背景index=0
  • connectivity = 8: 连通域,默认是8连通
  • ltype = CV_32S: 输出的labels类型,默认是CV_32S

所有内容均来源于贾志刚老师的知识星球——OpenCV研习社,本文为个人整理学习,已获得贾老师授权,有兴趣、有能力的可以加入贾老师的知识星球进行深入学习。
在这里插入图片描述

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值