RDD的检查点

首先,要清楚。为什么spark要引入检查点机制?引入RDD的检查点?

    如果缓存丢失了,则需要重新计算。如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容忽视的。为了避免缓存丢失重新计算带来的开销,Spark又引入检查点机制。

 

 

      RDD的缓存能够在第一次计算完成后,将计算结果保存到内存、本地文件系统或者Tachyon(分布式内存文件系统)中。通过缓存,Spark避免了RDD上的重复计算,能够极大地提升计算速度。但是,如果缓存丢失了,则需要重新计算。如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容忽视的。为了避免缓存丢失重新计算带来的开销,Spark又引入检查点(checkpoint)机制。

 

 

 

 

RDD的缓存和RDD的checkpoint的区别

      RDD的缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存、本地文件系统和Tachyon)写入不同的介质。

      而RDD的检查点不同,它是在计算完成后,重新建立一个Job来计算。

      为了避免重复计算,推荐先将RDD缓存,这样就能保证检查点的操作可以快速完成。

    

 

 

 

 

 

RDD的checkpoint的处理

  在缓存没有命中的情况下,首先会判断是否保存了RDD的checkpoint,如果有,则读取checkpoint。为了理解checkpoint的RDD是如何读取计算结果的,需要先看一下checkpoint的数据是如何写入的。
  首先在Job结束后,会判断是否需要checkpoint。如果需要,就调用org.apache.spark.rdd.RDDCheckpointData#doCheckpoint。doCheckpoint首先为数据创建一个目录;然后启动一个新的Job来计算,并且将计算结果写入新创建的目录;接着创建一个org.apache.spark.rdd.CheckpointRDD;最后,原始RDD的所有依赖被清除,这就意味着RDD的转换的计算链(compute chain)等信息都被清除。这个处理逻辑中,数据写入的实现在org.apache.spark.rdd.CheckpointRDD$#writeToFile。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值