机器学习基础算法 (二)-逻辑回归

python 环境的配置参考 从零开始:Python 环境搭建与工具配置

在这里插入图片描述

点击进入:机器学习基础算法 (一)-线性回归
点击进入:机器学习基础算法 (二)-逻辑回归
点击进入:机器学习基础算法 (三)-支持向量机(SVM)
点击进入:机器学习基础算法 (四)-决策树(Decision Tree)
点击进入:机器学习基础算法 (五)-随机森林:集成学习的强大力量
点击进入:机器学习基础算法 (六)-k 最近邻算法(k-Nearest Neighbors, k-NN)
点击进入:机器学习基础算法 (七)-朴素贝叶斯(Naive Bayes)
点击进入:机器学习基础算法 (八)-K均值聚类(K-Means Clustering)
点击进入:机器学习基础算法 (九) - AdaBoost
点击进入:机器学习基础算法 (九-二) - 梯度提升机(Gradient Boosting Machines, GBM)
点击进入:机器学习基础算法 (十) - XGBoost
点击进入:机器学习基础算法 (十一) - LightGBM-微软
点击进入:机器学习基础算法 (十二) - 层次聚类(Hierarchical Clustering)
点击进入:机器学习基础算法 (十三) - 主成分分析(PCA, Principal Component Analysis)
点击进入:机器学习基础算法 (十四) - 独立成分分析(ICA, Independent Component Analysis)
点击进入:机器学习基础算法 (十五) - t-SNE(t-Distributed Stochastic Neighbor Embedding)

逻辑回归是一种用于解决二分类问题的机器学习算法,它可以预测输入数据属于某个类别的概率。本文将详细介绍逻辑回归的原理、Python 实现、模型评估和调优,并结合垃圾邮件分类案例进行实战演练。

一、逻辑回归原理

在这里插入图片描述

逻辑回归使用 Sigmoid 函数将线性回归模型的输出转换为概率值。Sigmoid 函数的公式如下:

P(y=1|x) = 1 / (1 + exp(-(β₀ + β₁x₁ + ⋯ + βᵣ𝑥ᵣ)))

其中:

  • P(y=1|x) 是输入数据 x 属于类别 1 的概率
  • x₁, x₂, …, xᵣ 是特征
  • β₀ 是截距
  • β₁, β₂, …, βᵣ 是系数

逻辑回归模型通过学习训练数据,找到最佳的 β₀, β₁, …, βᵣ 参数值,使得模型预测的概率值与真实类别之间的误差最小化。

二、Python 实现逻辑回归模型

Python 中可以使用 scikit-learn 库来实现逻辑回归模型。以下是一个简单的示例:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix

# 导入数据
# 假设 X 是特征矩阵,y 是目标变量向量

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建逻辑回归模型
model 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海棠AI实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值