O(1), O(n), O(logn), O(nlogn) ,O(n^2)的区别

本文深入解析了算法复杂度及空间复杂度的概念,详细解释了O(1), O(n), O(logn), O(nlogn)等表示方法,帮助读者理解算法耗时与数据量之间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、定义

  • 在描述算法复杂度时,经常用到O(1), O(n), O(logn), O(nlogn)来表示对应复杂度程度, 不过目前大家默认也通过这几个方式表示空间复杂度 。

  • 那么,O(1), O(n), O(logn), O(nlogn)就可以看作既可表示算法复杂度,也可以表示空间复杂度。

  • 大O加上()的形式,里面其实包裹的是一个函数f(),O(f()),指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。

  • 如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

2、 举例

3、常见统计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值