PV,UV,VV 含义

PV(Page View,浏览量),是指在一个统计周期内,浏览页面的数之和。

UV(User View, 用户访问量),在一个统计周期内,访问网站的人数之和(同一用户重复访问只算一次)

VV(Video View,播放数),是指在一个统计周期内,视频被打开的次数之和。

clear; syms xi theta t real; % % 参数赋值 L = 0.1; % 圆柱壳长度 (m) h = 5e-4; % 厚度 (m) R = 0.05; % 半径 (m) rho = 2600; % 密度 (kg/m³) zeta = 0.0005; % 阻尼比 mu = 0.3; % 泊松比 E = 7e10; % 弹性模量 (Pa) Omega_bar = 0; % 无量纲转速 L_r = L / R; % 无量纲长度 H_r = h / R; % 无量纲厚度 f_bar =5.2e-9; %参数2 R=0.05; L_r = 5; % 无量纲长度 H_r = 0.002; % 无量纲厚度 % % 参数3(算例2参数 - 来自文献数据) % L3 = 0.256; % 圆柱壳长度 (m) % R3 = 0.16; % 平均半径 (m) % h3 = 0.0025; % 厚度 (m) % E3 = 110e9; % 弹性模量 (Pa) 110 GPa % mu3 = 0.31; % 泊松比 % rho3 = 4480; % 密度 (kg/m³) % Omega_rpm = 20000; % 转速 (r/min) % Omega3 = Omega_rpm * 2*pi/60; % 转换为 rad/s %矩阵无量纲化需在能量方程统一除以rho * h * R * L * h/(gamma^2) % 计算 Q11, Q22, Q12, G Q11 = E / (1 - mu^2); Q22 = E / (1 - mu^2); Q12 = (mu * E) / (1 - mu^2); G = E / (2 * (1 + mu)); gamma = R*sqrt(rho*(1-mu^2)/E); % omega_d_bar= gamma*; % tau= ; % 高斯基函数参数 Sx = 10; % 高斯中心点数 bls = 2; % 每侧边界扩展层数(仅右侧有意义) az = 1; % 物理长度 cxz = az / Sx; % 基函数带宽(物理坐标) acz_end = az + bls * cxz; % 扩展后的区间终点(右侧) acz_start = 0-bls * cxz; % 起始点固定为0(不允许负轴) NumX = Sx + 2*bls + 1; % 总点数 = 原始点数 + 右侧扩展层数 +1 qxs = linspace(acz_start, acz_end, NumX); % 物理坐标中心点 FX = exp(-(xi - qxs).^2 / (2 * cxz^2))'; % 无量纲基函数 % overlap = exp(-(qxs(2)-qxs(1))^2/(2*cxz^2)); % 若<0.3则带宽不足 %三角函数 n = 6; % 周向波数 FY = [cos(n*theta),sin(n*theta)]'; % 周向模态函数 NX = length(FX); NY = length(FY); % 计算积分矩阵 H_i [F00x, F01x,F02x,F11x,F22x,F00y,F01y,F02y,F11y,F22y] = Integral(FX, FY); [H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, H17, H18] = ... ComputeAllIntegralMatrices(F00x, F01x, F02x, F11x, F22x, F00y, F01y, F02y, F11y, F22y); % --- 构造无量纲矩阵 --- % (1) 质量矩阵 M_bar M_bar = blkdiag(H1, H7, H13); % (4) 二次刚度矩阵 K_bar K11 = (1 / L_r^2) * H2 + (Omega_bar^2 + (1 - mu)/2) * H3; K12 = (1 / L_r) * (mu * H4 + (1 - mu)/2 * H5); K13 = (mu / L_r) * H6; K22 = (1 + Omega_bar^2) * H10 + ((1 - mu) / (2 * L_r^2)) * H8; K23 = H11 + Omega_bar^2 * H11 - Omega_bar^2 * H12; K33 = H13 + (H_r^2 / (12 * L_r^4)) * H14 + ... (mu * H_r^2 / (12 * L_r^2)) * H15 + (H_r^2 / 12) * H16 + ... ((1 - mu) * H_r^2 / (6 * L_r^2)) * H17 + Omega_bar^2 * H18; K_bar = [K11, K12, K13; K12', K22, K23; K13', K23', K33]; % 定义人工弹簧的刚度值 Asp = 1e11; % 定义边界条件类型 PDBC = 3; if PDBC == 1 % % % % 固支边界条件 (CC) ku1 = Asp; kv1 = Asp; kw1 = Asp; pu1 = 0; pv1 = 0; pw1 = Asp; ku2 = Asp; kv2 = Asp; kw2 = Asp; pu2 = 0; pv2 = 0; pw2 = Asp; elseif PDBC == 2 % % % 一端固支一端自由边界条件 (CF) ku1 = Asp; kv1 = Asp; kw1 = Asp; pu1 = 0; pv1 = 0; pw1 = Asp; ku2 = 0; kv2 = 0; kw2 = 0; pu2 = 0; pv2 = 0; pw2 = 0; elseif PDBC == 3 % % % 简支边界条件 (SS) ku1 = 0; kv1 = Asp; kw1 = Asp; pu1 = 0; pv1 = 0; pw1 = 0; ku2 = 0; kv2 = Asp; kw2 = Asp; pu2 = 0; pv2 = 0; pw2 = 0; end dFX_dx = diff(FX,xi); FX1 = subs(FX,xi,0); FX2 = subs(FX,xi,1); dFX_dx_a1 = subs(dFX_dx,xi,0); dFX_dx_a2 = subs(dFX_dx,xi,1); F001x = double(conj(FX1)*FX1'); F002x = double(conj(FX2)*FX2'); F00d1x = double(conj(dFX_dx_a1)*dFX_dx_a1'); F00d2x = double(conj(dFX_dx_a2)*dFX_dx_a2'); keduu = ku1*kron(F001x,F00y) + ku2*kron(F002x,F00y); kedvv = kv1*kron(F001x,F00y) + kv2*kron(F002x,F00y); kedww = kw1 *kron(F001x,F00y) + kw2*kron(F002x,F00y) + (1/(L_r^2*R^2))*pw1*kron(F00d1x,F00y) + (1/(L_r^2*R^2))*pw2*kron(F00d2x,F00y); % Ked_dim = -(mu^2 - 1)*blkdiag(keduu,kedvv,kedww); Ked_dim = ((1-mu^2)/(E*H_r*L_r))*blkdiag(keduu,kedvv,kedww); % 合并边界条件 K_global = (K_bar + Ked_dim); % (3) 陀螺矩阵 G_bar G_bar = 2 * Omega_bar * [zeros(size(H1)), zeros(size(H1)), zeros(size(H1)); zeros(size(H7)), zeros(size(H7)), H9; zeros(size(H13)), -H9', zeros(size(H13))]; % %二次项刚度矩阵 % [Kx111y000, Kx100y011, Kx001y110, Kx011y100, ... % Kx000y111, Kx110y001, Kx011y000, Kx110y000, ... % Kx000y001, Kx000y011, Kx000y110, Kx101y010] = Integral3D(FX, FY); % %二次刚度矩阵 % Knon2uu = zeros(NX*NY,NX*NY); % Knon2uv = zeros(NX*NY,NX*NY); % Knon2uw = (h*R/(2*L^2))* Q11* Kx111y000 + (h/(2*R))* Q12* Kx100y011+ h/R* G* Kx001y110; % Knon2vv = zeros(NX*NY,NX*NY); % Knon2vw = h/(2*L)* Q12* Kx011y100 + h*L/(2*R^2)* Q22* Kx000y111 + h/L* G* Kx110y001; % Knon2ww = (h*R/(2*L^2))* Q11* Kx111y000 + h/(2*L)* Q12* Kx110y001 + h/(2*L)* Q12* Kx011y000... % + h/L* Q12* Kx110y000 + h/(2*R)* Q12* Kx001y110 + h*L/(2*R^2)* Q22* Kx000y111... % + h*L/(2*R^2)* Q22* Kx000y011 + h*L/(R^2)* Q22* Kx000y110... % + h/R* G* Kx100y011 + h/L* G* Kx101y010; % K_nonlinear2 = [Knon2uu, Knon2uv, Knon2uw; % Knon2uv', Knon2vv, Knon2vw; % Knon2uw', Knon2vw', Knon2ww]; % % K_nonlinear2dimless=h*K_nonlinear2/(rho * h * R * L * h/(gamma^2))/h^2; % K_nonlinear2dimless=h^2*K_nonlinear2/(rho * h * R * L * h/(gamma^2)); % %三次刚度矩阵 % [Kx1111y0000, Kx0000y1111, Kx1100y0011, Kx0011y1100] = Integral4D(FX, FY); % Knon3uu = zeros(NX*NY,NX*NY); % Knon3uv = zeros(NX*NY,NX*NY); % Knon3uw = zeros(NX*NY,NX*NY); % Knon3vv = zeros(NX*NY,NX*NY); % Knon3vw = zeros(NX*NY,NX*NY); % Knon3ww = (h*R/(2*L^3))* Q11* Kx1111y0000 + (h*L/(2*R^3))* Q22* Kx0000y1111 ... % + (h/(2*R*L)*Q12 + h/(R*L)*G)*(Kx1100y0011 + Kx0011y1100); % K_nonlinear3 = [Knon3uu, Knon3uv, Knon3uw; % Knon3uv', Knon3vv, Knon3vw; % Knon3uw', Knon3vw', Knon3ww]; % K_nonlinear3dimless = h^3 * K_nonlinear3 / (rho * h * R * L * h/(gamma^2)); % %无量纲外激励 % W=kron(FX,FY); % F=[zeros(size(W)); zeros(size(W)); W*f_bar*cos(omega_d_bar*tau)/(H_r^2*L_r)]; % --- 合并为全局矩阵 --- N = size(M_bar, 1); A = [zeros(N), eye(N); -M_bar\K_global, -M_bar\G_bar]; % 状态空间矩阵 % 计算特征频率 [Te,eig_vals] = eigs(A,1e2,'smallestabs'); frequencies=imag(diag(eig_vals)); % save('tezhengxiangliang.mat',"frequencies",'Te'); NX = length(FX); NY = length(FY); DispDofs=3*NX*NY; ModeTruncation=1; VsN10=real(Te(1:DispDofs, ModeTruncation)); AlphXL=FX; B0ysL=FY; ux0=AlphXL; vx0=AlphXL; wx0=AlphXL; ZerNx=zeros(size(ux0)); A0xuL=[ux0;ZerNx;ZerNx]; A0xvL=[ZerNx;vx0;ZerNx]; A0xwL=[ZerNx;ZerNx;wx0]; % % 分别形成两个方向对于的向量函数(也即变量分离) J1mx=ones(size(A0xuL)); J1ny=ones(size(B0ysL)); AlphXLextendUx=kron(A0xuL,J1ny); %%% U在x方向的振型函数向量 AlphXLextendVx=kron(A0xvL,J1ny); %%% V在x方向的振型函数向量 AlphXLextendWx=kron(A0xwL,J1ny); %%% W在x方向的振型函数向量 ModeFU=AlphXLextendUx'*VsN10; %%% U在x方向的振型函数 ModeFV=AlphXLextendVx'*VsN10; %%% V在x方向的振型函数 ModeFW=AlphXLextendWx'*VsN10; %%% W在x方向的振型函数 % 创建符号函数 ModeFUi = matlabFunction(ModeFU); ModeFVi = matlabFunction(ModeFV); ModeFWi = matlabFunction(ModeFW); % 先计算函数值,然后归一化 xa=0;xb=1; xs=linspace(xa,xb,1e4); Uy0 = ModeFUi(xs); Vy0 = ModeFVi(xs); Wy0 = ModeFWi(xs); % 找到最大值的位置进行归一化 [maxU, idxU] = max(abs(Uy0)); [maxV, idxV] = max(abs(Vy0)); [maxW, idxW] = max(abs(Wy0)); ModeFU = ModeFU / maxU; ModeFV = ModeFV / maxV; ModeFW = ModeFW / maxW; save('ModeFUVW.mat','ModeFU','ModeFV','ModeFW'); ModeFUi = matlabFunction(ModeFU); ModeFVi = matlabFunction(ModeFV); ModeFWi = matlabFunction(ModeFW); xa=0;xb=1; xs=linspace(xa,xb,1e3); Uy1 = ModeFUi(xs); Vy1 = ModeFVi(xs); Wy1 = ModeFWi(xs); plot(xs,Uy1,'r-'); hold on; plot(xs,Vy1,'g-'); hold on; plot(xs,Wy1,'b-'); hold off; legend('U','V','W'); % 指定目标文件夹路径 % folder_path = 'H:\旋转圆柱壳\旋转圆柱壳代码'; % Windows示例 % 拼接完整的文件路径 % full_file_path = fullfile(folder_path, 'ModeFUVW.mat'); % 保存文件到指定位置 % save(full_file_path, "ModeFU", 'ModeFV', 'ModeFW'); clear syms xi theta t real; n = 6; % 周向波数 FY = [cos(n*theta),sin(n*theta)]'; % 周向模态函数 load('ModeFUVW.mat'); NX=length(ModeFU);NY=length(FY); % 参数赋值 L = 0.1; % 圆柱壳长度 (m) h = 5e-4; % 厚度 (m) R = 0.05; % 半径 (m) rho = 2600; % 密度 (kg/m³) zeta = 0.0005; % 阻尼比 mu = 0.3; % 泊松比 E = 7e10; % 弹性模量 (Pa) Omega_bar = 0; % 无量纲转速 L_r = L / R; % 无量纲长度 H_r = h / R; % 无量纲厚度 %参数2 R=0.05; L_r = 5; % 无量纲长度 H_r = 0.002; % 无量纲厚度 %矩阵无量纲化需在能量方程统一除以rho * h * R * L * h/(gamma^2) % 计算 Q11, Q22, Q12, G Q11 = E / (1 - mu^2); Q22 = E / (1 - mu^2); Q12 = (mu * E) / (1 - mu^2); G = E / (2 * (1 + mu)); gamma = R*sqrt(rho*(1-mu^2)/E); % 计算积分矩阵 H_i [Fuu00x,Fuu11x] = Integraluux(ModeFU); [Fvv00x,Fvv11x] = Integraluux(ModeFV); [Fww00x,Fww11x,Fww22x,Fww02x] = Integralwwx(ModeFW); [Fuv01x,Fuv10x] = Integraluvx(ModeFU,ModeFV); [Fuw10x] = Integraluwx(ModeFU,ModeFW); [Fvw00x] = Integralvwx(ModeFV,ModeFW); [F00y,F01y,F02y,F11y,F22y] = Integraly(FY,0,2*pi); [H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11,H12, H13, H14, H15, H16, H17, H18] = ... ComputeAllIntegralMatricest_2(Fuu00x, Fuu11x, Fuv10x, Fuv01x, Fuw10x, Fvv00x,... Fvv11x, Fvw00x, Fww00x, Fww22x, Fww02x, Fww11x, F00y, F01y, F02y, F11y, F22y); % --- 构造无量纲矩阵 --- % (1) 质量矩阵 M_bar M_bar = blkdiag(H1, H7, H13) % (4) 刚度矩阵 K_bar K11 = (1 / L_r^2) * H2 + (Omega_bar^2 + (1 - mu)/2) * H3; K12 = (1 / L_r) * (mu * H4 + (1 - mu)/2 * H5); K13 = (mu / L_r) * H6; K22 = (1 + Omega_bar^2) * H10 + ((1 - mu) / (2 * L_r^2)) * H8; K23 = H11 + Omega_bar^2 * H11 - Omega_bar^2 * H12; K33 = H13 + (H_r^2 / (12 * L_r^4)) * H14 + ... (mu * H_r^2 / (12 * L_r^2)) * H15 + ... (H_r^2 / 12) * H16 + ... ((1 - mu) * H_r^2 / (6 * L_r^2)) * H17 + ... Omega_bar^2 * H18; K_bar = [K11, K12, K13; K12', K22, K23; K13', K23', K33] % 合并边界条件 K_global = K_bar; % (3) 陀螺矩阵 G_bar G_bar = 2 * Omega_bar * [ zeros(size(H1)), zeros(size(H1)), zeros(size(H1)); zeros(size(H7)), zeros(size(H7)), H9; zeros(size(H13)), -H9', zeros(size(H13))]; %二次项刚度矩阵 [KxU1W1W1yU0W0W0, KxU1W0W0yU0W1W1, KxU0W0W1yU1W1W0] = Integral3Duw(ModeFU, ModeFW, FY, FY) [KxV0W1W1yV1W0W0, KxV0W0W0yV1W1W1, KxV1W1W0yV0W0W1] = Integral3Dvw(ModeFV, ModeFW, FY, FY) [KxW1W1U1yW0W0U0, KxW1W1V0yW0W0V1, KxW0W1W1yW0W0W0,... KxW1W1W0yW0W0W0, KxW0W0U1yW1W1U0, KxW0W0V0yW1W1V1,... KxW0W0W0yW0W1W1, KxW0W0W0yW1W1W0, KxW1W0U0yW0W1U1,... KxW1W0V1yW0W1V0] = Integral3Dww(ModeFU, ModeFV, ModeFW, FY, FY, FY) % (4) 刚度矩阵 K_bar Knon2uu = zeros(NX*NY,NX*NY); Knon2uv = zeros(NX*NY,NX*NY); Knon2uw = (h*R/(2*L^2))* Q11* KxU1W1W1yU0W0W0 + (h/(2*R))* Q12* KxU1W0W0yU0W1W1+ h/R* G* KxU0W0W1yU1W1W0; Knon2vv = zeros(NX*NY,NX*NY); Knon2vw = h/(2*L)* Q12* KxV0W1W1yV1W0W0 + h*L/(2*R^2)* Q22* KxV0W0W0yV1W1W1 + h/L* G* KxV1W1W0yV0W0W1; Knon2ww = (h*R/(2*L^2))* Q11* KxW1W1U1yW0W0U0 + h/(2*L)* Q12* KxW1W1V0yW0W0V1 + h/(2*L)* Q12* KxW0W1W1yW0W0W0... + h/L* Q12* KxW1W1W0yW0W0W0 + h/(2*R)* Q12* KxW0W0U1yW1W1U0 + h*L/(2*R^2)* Q22* KxW0W0V0yW1W1V1... + h*L/(2*R^2)* Q22* KxW0W0W0yW0W1W1 + h*L/(R^2)* Q22* KxW0W0W0yW1W1W0... + h/R* G* KxW1W0U0yW0W1U1 + h/L* G* KxW1W0V1yW0W1V0; K_nonlinear2 = [Knon2uu, Knon2uv, Knon2uw; Knon2uv', Knon2vv, Knon2vw; Knon2uw', Knon2vw', Knon2ww] K_nonlinear2dimless=h^2*K_nonlinear2/(rho * h * R * L * h/(gamma^2)) % Knon2ww = h/(2*L)* Q12* KxW0W1W1yW0W0W0... % + h/L* Q12* KxW1W1W0yW0W0W0 ... % + h*L/(2*R^2)* Q22* KxW0W0W0yW0W1W1 + h*L/(R^2)* Q22* KxW0W0W0yW1W1W0; K_nonlinear2dimless = vpa(simplify(expand(K_nonlinear2dimless)), 2); % 8位有效数字 disp('小数系数矩阵:'); K_nonlinear2dimless %三次刚度矩阵 [Kx1111y0000, Kx0000y1111, Kx1100y0011, Kx0011y1100] = Integral4D(ModeFW, FY) Knon3uu = zeros(NX*NY,NX*NY); Knon3uv = zeros(NX*NY,NX*NY); Knon3uw = zeros(NX*NY,NX*NY); Knon3vv = zeros(NX*NY,NX*NY); Knon3vw = zeros(NX*NY,NX*NY); Knon3ww = (h*R/(2*L^3))* Q11* Kx1111y0000 + (h*L/(2*R^3))* Q22* Kx0000y1111 ... + (h/(2*R*L)*Q12 + h/(R*L)*G)*(Kx1100y0011 + Kx0011y1100); K_nonlinear3 = [Knon3uu, Knon3uv, Knon3uw; Knon3uv', Knon3vv, Knon3vw; Knon3uw', Knon3vw', Knon3ww]; K_nonlinear3dimless=h^3*K_nonlinear3/(rho * h * R * L * h/(gamma^2)) K_nonlinear3dimless = vpa(simplify(expand(K_nonlinear3dimless)), 2); % 8位有效数字 disp('小数系数矩阵:'); K_nonlinear3dimless %阻尼矩阵 c_u = 2 * zeta * rho * h * 0.0231; % u方向 c_bar=sqrt((1-mu^2)/(rho*E))*c_u; C_bar= 1/H_r*c_bar*blkdiag(H1, H7, H13); % % %无量纲外激励 W=kron(ModeFW,FY); % 如果ModeFW和FY是函数句柄 % 计算在xi=0.5, theta=0时的值 W_value = subs(W,{xi,theta},[0.5, 0]); disp('在xi=0.5, theta=0时的外激励向量:'); disp(W_value); f_bar =5.2e-9; F=[zeros(size(W)); zeros(size(W)); f_bar*double(W_value)/(H_r^2*L_r)] % % --- 合并为全局矩阵 --- N = size(M_bar, 1); A = [zeros(N), eye(N); -M_bar\K_global, -M_bar\G_bar]; % 状态空间矩阵 % 计算特征频率 [Te,eig_vals] = eigs(A,1e2,'smallestabs'); frequencies=imag(diag(eig_vals)); % save('MKGnonlinear.mat',"M_bar",'K_global','G_bar','K_nonlinear2dimless','K_nonlinear3dimless','F'); % 指定目标文件夹路径 folder_path = 'H:\旋转圆柱壳\旋转圆柱壳代码(无量纲)\ThickShellCODE\ThickShellCODE'; % Windows示例 % 拼接完整的文件路径 full_file_path = fullfile(folder_path, 'MKGnonlinear.mat'); % 保存文件到指定位置 save(full_file_path, "M_bar", 'K_global','C_bar', 'G_bar', 'K_nonlinear2dimless', 'K_nonlinear3dimless', 'F'); 这是我的全部代码,质量矩阵和刚度矩阵肯定没问题,因为里面和振型回代求解的频率一致,并且与已有文献结果一致
最新发布
09-19
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值