MySQL分区(Partition)功能试验

本文介绍MySQL分区的不同类型及其应用场景,并通过实例对比分析分区与非分区表在性能上的区别。通过创建分区表、执行SQL查询及索引优化等操作,验证分区技术如何显著提升大数据量查询效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录
[概述]
[分区表和未分区表试验过程]
[分区命令详解]

[概述]

自5.1开始对分区(Partition)有支持,6.0应比较稳定

= 水平分区(根据列属性按行分)=
举个简单例子:一个包含十年发票记录的表可以被分区为十个不同的分区,每个分区包含的是其中一年的记录。

=== 水平分区的几种模式:===
* Range(范围) – 这种模式允许DBA将数据划分不同范围。例如DBA可以将一个表通过年份划分成三个分区,80年代(1980's)的数据,90年代(1990's)的数据以及任何在2000年(包括2000年)后的数据。

* Hash(哈希) – 这中模式允许DBA通过对表的一个或多个列的Hash Key进行计算,最后通过这个Hash码不同数值对应的数据区域进行分区,。例如DBA可以建立一个对表主键进行分区的表。

* Key(键值) – 上面Hash模式的一种延伸,这里的Hash Key是MySQL系统产生的。

* List(预定义列表) – 这种模式允许系统通过DBA定义的列表的值所对应的行数据进行分割。例如:DBA建立了一个横跨三个分区的表,分别根据2004年2005年和2006年值所对应的数据。

* Composite(复合模式) - 很神秘吧,哈哈,其实是以上模式的组合使用而已,就不解释了。举例:在初始化已经进行了Range范围分区的表上,我们可以对其中一个分区再进行hash哈希分区。

= 垂直分区(按列分)=
举个简单例子:一个包含了大text和BLOB列的表,这些text和BLOB列又不经常被访问,这时候就要把这些不经常使用的text和BLOB了划分到另一个分区,在保证它们数据相关性的同时还能提高访问速度。


[分区表和未分区表试验过程]

*创建分区表,按日期的年份拆分
mysql> CREATE TABLE part_tab ( c1 int default NULL, c2 varchar(30) default NULL, c3 date default NULL) engine=myisam
PARTITION BY RANGE (year(c3)) (PARTITION p0 VALUES LESS THAN (1995),
PARTITION p1 VALUES LESS THAN (1996) , PARTITION p2 VALUES LESS THAN (1997) ,
PARTITION p3 VALUES LESS THAN (1998) , PARTITION p4 VALUES LESS THAN (1999) ,
PARTITION p5 VALUES LESS THAN (2000) , PARTITION p6 VALUES LESS THAN (2001) ,
PARTITION p7 VALUES LESS THAN (2002) , PARTITION p8 VALUES LESS THAN (2003) ,
PARTITION p9 VALUES LESS THAN (2004) , PARTITION p10 VALUES LESS THAN (2010),
PARTITION p11 VALUES LESS THAN MAXVALUE );
注意最后一行,考虑到可能的最大值

*创建未分区表
mysql> create table no_part_tab (c1 int(11) default NULL,c2 varchar(30) default NULL,c3 date default NULL) engine=myisam;

*通过存储过程灌入800万条测试数据

mysql> set sql_mode=''; /* 如果创建存储过程失败,则先需设置此变量, bug? */

mysql> delimiter //   /* 设定语句终结符为 //,因存储过程语句用;结束 */
mysql> CREATE PROCEDURE load_part_tab()
       begin
    declare v int default 0;
    while v < 8000000
    do
        insert into part_tab
        values (v,'testing partitions',adddate('1995-01-01',(rand(v)*36520) mod 3652));
         set v = v + 1;
    end while;
    end
    //
mysql> delimiter ;
mysql> call load_part_tab();
Query OK, 1 row affected (8 min 17.75 sec)
mysql> insert into no_part_tab select * from part_tab;
Query OK, 8000000 rows affected (51.59 sec)
Records: 8000000 Duplicates: 0 Warnings: 0

* 测试SQL性能
mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';     
+----------+
| count(*) |
+----------+
|   795181 |
+----------+
1 row in set (0.55 sec)
mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';
+----------+
| count(*) |
+----------+
|   795181 |
+----------+
1 row in set (4.69 sec)
结果表明分区表比未分区表的执行时间少90%。

* 通过explain语句来分析执行情况
mysql > explain select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31'/G
/* 结尾的/G使得mysql的输出改为列模式 */                   
*************************** 1. row ***************************
           id: 1
select_type: SIMPLE
        table: no_part_tab
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 8000000
        Extra: Using where
1 row in set (0.00 sec)

mysql> explain select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31'/G
*************************** 1. row ***************************
           id: 1
select_type: SIMPLE
        table: part_tab
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 798458
        Extra: Using where
1 row in set (0.00 sec)
explain语句显示了SQL查询要处理的记录数目

* 试验创建索引后情况
mysql> create index idx_of_c3 on no_part_tab (c3);
Query OK, 8000000 rows affected (1 min 18.08 sec)
Records: 8000000 Duplicates: 0 Warnings: 0

mysql> create index idx_of_c3 on part_tab (c3);
Query OK, 8000000 rows affected (1 min 19.19 sec)
Records: 8000000 Duplicates: 0 Warnings: 0
创建索引后的数据库文件大小列表:
2008-05-24 09:23             8,608 no_part_tab.frm
2008-05-24 09:24       255,999,996 no_part_tab.MYD
2008-05-24 09:24        81,611,776 no_part_tab.MYI
2008-05-24 09:25                 0 part_tab#P#p0.MYD
2008-05-24 09:26             1,024 part_tab#P#p0.MYI
2008-05-24 09:26        25,550,656 part_tab#P#p1.MYD
2008-05-24 09:26         8,148,992 part_tab#P#p1.MYI
2008-05-24 09:26        25,620,192 part_tab#P#p10.MYD
2008-05-24 09:26         8,170,496 part_tab#P#p10.MYI
2008-05-24 09:25                 0 part_tab#P#p11.MYD
2008-05-24 09:26             1,024 part_tab#P#p11.MYI
2008-05-24 09:26        25,656,512 part_tab#P#p2.MYD
2008-05-24 09:26         8,181,760 part_tab#P#p2.MYI
2008-05-24 09:26        25,586,880 part_tab#P#p3.MYD
2008-05-24 09:26         8,160,256 part_tab#P#p3.MYI
2008-05-24 09:26        25,585,696 part_tab#P#p4.MYD
2008-05-24 09:26         8,159,232 part_tab#P#p4.MYI
2008-05-24 09:26        25,585,216 part_tab#P#p5.MYD
2008-05-24 09:26         8,159,232 part_tab#P#p5.MYI
2008-05-24 09:26        25,655,740 part_tab#P#p6.MYD
2008-05-24 09:26         8,181,760 part_tab#P#p6.MYI
2008-05-24 09:26        25,586,528 part_tab#P#p7.MYD
2008-05-24 09:26         8,160,256 part_tab#P#p7.MYI
2008-05-24 09:26        25,586,752 part_tab#P#p8.MYD
2008-05-24 09:26         8,160,256 part_tab#P#p8.MYI
2008-05-24 09:26        25,585,824 part_tab#P#p9.MYD
2008-05-24 09:26         8,159,232 part_tab#P#p9.MYI
2008-05-24 09:25             8,608 part_tab.frm
2008-05-24 09:25                68 part_tab.par

* 再次测试SQL性能
mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';    +----------+
| count(*) |
+----------+
|   795181 |
+----------+
1 row in set (2.42 sec)   /* 为原来4.69 sec 的51%*/  
重启mysql ( net stop mysql, net start mysql)后,查询时间降为0.89 sec,几乎与分区表相同。

mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1995-12-31';
+----------+
| count(*) |
+----------+
|   795181 |
+----------+
1 row in set (0.86 sec)

* 更进一步的试验
** 增加日期范围
mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < date '1997-12-31';
+----------+
| count(*) |
+----------+
| 2396524 |
+----------+
1 row in set (5.42 sec)

mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date '1997-12-31';
+----------+
| count(*) |
+----------+
| 2396524 |
+----------+
1 row in set (2.63 sec)
** 增加未索引字段查询
mysql> select count(*) from part_tab where c3 > date '1995-01-01' and c3 < date
'1996-12-31' and c2='hello';
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.75 sec)

mysql> select count(*) from no_part_tab where c3 > date '1995-01-01' and c3 < da
te '1996-12-31' and c2='hello';
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (11.52 sec)


= 初步结论 =
* 分区和未分区占用文件空间大致相同 (数据和索引文件)
* 如果查询语句中有未建立索引字段,分区时间远远优于未分区时间
* 如果查询语句中字段建立了索引,分区和未分区的差别缩小,分区略优于未分区。


= 最终结论 =
* 对于大数据量,建议使用分区功能。
* 去除不必要的字段
* 根据手册, 增加myisam_max_sort_file_size 会增加分区性能

[分区命令详解]

= 分区例子 =
* RANGE 类型

CREATE TABLE users (
       uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
       name VARCHAR(30) NOT NULL DEFAULT '',
       email VARCHAR(30) NOT NULL DEFAULT ''
)
PARTITION BY RANGE (uid) (
       PARTITION p0 VALUES LESS THAN (3000000)
       DATA DIRECTORY = '/data0/data'
       INDEX DIRECTORY = '/data1/idx',

       PARTITION p1 VALUES LESS THAN (6000000)
       DATA DIRECTORY = '/data2/data'
       INDEX DIRECTORY = '/data3/idx',

       PARTITION p2 VALUES LESS THAN (9000000)
       DATA DIRECTORY = '/data4/data'
       INDEX DIRECTORY = '/data5/idx',

       PARTITION p3 VALUES LESS THAN MAXVALUE     DATA DIRECTORY = '/data6/data'
       INDEX DIRECTORY = '/data7/idx'
);

在这里,将用户表分成4个分区,以每300万条记录为界限,每个分区都有自己独立的数据、索引文件的存放目录,与此同时,这些目录所在的物理磁盘分区可能也都是完全独立的,可以提高磁盘IO吞吐量。
     
* LIST 类型

CREATE TABLE category (
     cid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
     name VARCHAR(30) NOT NULL DEFAULT ''
)
PARTITION BY LIST (cid) (
     PARTITION p0 VALUES IN (0,4,8,12)
     DATA DIRECTORY = '/data0/data'
     INDEX DIRECTORY = '/data1/idx',
    
     PARTITION p1 VALUES IN (1,5,9,13)
     DATA DIRECTORY = '/data2/data'
     INDEX DIRECTORY = '/data3/idx',
    
     PARTITION p2 VALUES IN (2,6,10,14)
     DATA DIRECTORY = '/data4/data'
     INDEX DIRECTORY = '/data5/idx',
    
     PARTITION p3 VALUES IN (3,7,11,15)
     DATA DIRECTORY = '/data6/data'
     INDEX DIRECTORY = '/data7/idx'
);  

分成4个区,数据文件和索引文件单独存放。

* HASH 类型    
CREATE TABLE users (
     uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
     name VARCHAR(30) NOT NULL DEFAULT '',
     email VARCHAR(30) NOT NULL DEFAULT ''
)
PARTITION BY HASH (uid) PARTITIONS 4 (
     PARTITION p0
     DATA DIRECTORY = '/data0/data'
     INDEX DIRECTORY = '/data1/idx',

     PARTITION p1
     DATA DIRECTORY = '/data2/data'
     INDEX DIRECTORY = '/data3/idx',

     PARTITION p2
     DATA DIRECTORY = '/data4/data'
     INDEX DIRECTORY = '/data5/idx',

     PARTITION p3
     DATA DIRECTORY = '/data6/data'
     INDEX DIRECTORY = '/data7/idx'
);
分成4个区,数据文件和索引文件单独存放。

例子:
CREATE TABLE ti2 (id INT, amount DECIMAL(7,2), tr_date DATE)
    ENGINE=myisam
    PARTITION BY HASH( MONTH(tr_date) )
    PARTITIONS 6;

CREATE PROCEDURE load_ti2()
       begin
    declare v int default 0;
    while v < 80000
    do
        insert into ti2
        values (v,'3.14',adddate('1995-01-01',(rand(v)*3652) mod 365));
         set v = v + 1;
    end while;
    end
    //



* KEY 类型
CREATE TABLE users (
     uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
     name VARCHAR(30) NOT NULL DEFAULT '',
     email VARCHAR(30) NOT NULL DEFAULT ''
)
PARTITION BY KEY (uid) PARTITIONS 4 (
     PARTITION p0
     DATA DIRECTORY = '/data0/data'
     INDEX DIRECTORY = '/data1/idx',
    
     PARTITION p1
     DATA DIRECTORY = '/data2/data'
     INDEX DIRECTORY = '/data3/idx',
    
     PARTITION p2
     DATA DIRECTORY = '/data4/data'
     INDEX DIRECTORY = '/data5/idx',
    
     PARTITION p3
     DATA DIRECTORY = '/data6/data'
     INDEX DIRECTORY = '/data7/idx'
);  
分成4个区,数据文件和索引文件单独存放。

* 子分区
子分区是针对 RANGE/LIST 类型的分区表中每个分区的再次分割。再次分割可以是 HASH/KEY 等类型。例如:
CREATE TABLE users (
     uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
     name VARCHAR(30) NOT NULL DEFAULT '',
     email VARCHAR(30) NOT NULL DEFAULT ''
)
PARTITION BY RANGE (uid) SUBPARTITION BY HASH (uid % 4) SUBPARTITIONS 2(
     PARTITION p0 VALUES LESS THAN (3000000)
     DATA DIRECTORY = '/data0/data'
     INDEX DIRECTORY = '/data1/idx',

     PARTITION p1 VALUES LESS THAN (6000000)
     DATA DIRECTORY = '/data2/data'
     INDEX DIRECTORY = '/data3/idx'
);

对 RANGE 分区再次进行子分区划分,子分区采用 HASH 类型。

或者

CREATE TABLE users (
     uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
     name VARCHAR(30) NOT NULL DEFAULT '',
     email VARCHAR(30) NOT NULL DEFAULT ''
)
PARTITION BY RANGE (uid) SUBPARTITION BY KEY(uid) SUBPARTITIONS 2(
     PARTITION p0 VALUES LESS THAN (3000000)
     DATA DIRECTORY = '/data0/data'
     INDEX DIRECTORY = '/data1/idx',

     PARTITION p1 VALUES LESS THAN (6000000)
     DATA DIRECTORY = '/data2/data'
     INDEX DIRECTORY = '/data3/idx'
);

对 RANGE 分区再次进行子分区划分,子分区采用 KEY 类型。

= 分区管理 =

    * 删除分区

      ALERT TABLE users DROP PARTITION p0;

      删除分区 p0。
    * 重建分区
          o RANGE 分区重建

            ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES LESS THAN (6000000));

            将原来的 p0,p1 分区合并起来,放到新的 p0 分区中。
          o LIST 分区重建

            ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES IN(0,1,4,5,8,9,12,13));

            将原来的 p0,p1 分区合并起来,放到新的 p0 分区中。
          o HASH/KEY 分区重建

            ALTER TABLE users REORGANIZE PARTITION COALESCE PARTITION 2;

            用 REORGANIZE 方式重建分区的数量变成2,在这里数量只能减少不能增加。想要增加可以用 ADD PARTITION 方法。
    * 新增分区
          o 新增 RANGE 分区

            ALTER TABLE category ADD PARTITION (PARTITION p4 VALUES IN (16,17,18,19)
            DATA DIRECTORY = '/data8/data'
            INDEX DIRECTORY = '/data9/idx');

            新增一个RANGE分区。
          o 新增 HASH/KEY 分区

            ALTER TABLE users ADD PARTITION PARTITIONS 8;

            将分区总数扩展到8个。

[ 给已有的表加上分区 ]

alter table results partition by RANGE (month(ttime))
(PARTITION p0 VALUES LESS THAN (1),
PARTITION p1 VALUES LESS THAN (2) , PARTITION p2 VALUES LESS THAN (3) ,
PARTITION p3 VALUES LESS THAN (4) , PARTITION p4 VALUES LESS THAN (5) ,
PARTITION p5 VALUES LESS THAN (6) , PARTITION p6 VALUES LESS THAN (7) ,
PARTITION p7 VALUES LESS THAN (8) , PARTITION p8 VALUES LESS THAN (9) ,
PARTITION p9 VALUES LESS THAN (10) , PARTITION p10 VALUES LESS THAN (11),
PARTITION p11 VALUES LESS THAN (12),
PARTITION P12 VALUES LESS THAN (13) );

默认分区限制分区字段必须是主键(PRIMARY KEY)的一部分,为了去除此
限制:
[方法1] 使用ID
mysql> ALTER TABLE np_pk
    ->     PARTITION BY HASH( TO_DAYS(added) )
    ->     PARTITIONS 4;
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

However, this statement using the id column for the partitioning column is valid, as shown here:

mysql> ALTER TABLE np_pk
    ->     PARTITION BY HASH(id)
    ->     PARTITIONS 4;
Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0

[方法2] 将原有PK去掉生成新PK
mysql> alter table results drop PRIMARY KEY;
Query OK, 5374850 rows affected (7 min 4.05 sec)
Records: 5374850 Duplicates: 0 Warnings: 0

mysql> alter table results add PRIMARY KEY(id, ttime);
Query OK, 5374850 rows affected (6 min 14.86 sec)
Records: 5374850 Duplicates: 0 Warnings: 0

<think>嗯,用户想学习HiveSQL的使用语法,还明确提到需要教程入门指南。从历史记录看,用户已经了解过索引等数据库概念,但对Hive这个特定工具可能还是新手。用户给出的引用内容其实已经提供了很好的学习线索:引用23都提到了Hive的核心特点基础语法,比如严格别名要求、与标准SQL的差异(子查询要用IN代替等)、以及它基于MapReduce的离线特性。用户应该需要系统性的学习路径。考虑到Hive的实际应用场景,教程设计需要突出三点:一是与普通SQL的差异点(比如分区表、严格模式),二是性能优化技巧(如分区裁剪),三是避免初学者踩坑(如忘记开启动态分区)。用户可能正在准备大数据方向的面试或实际项目,所以案例需要接近真实场景。上次回答数据库索引时用了数学公式解释B+树,这次在MapReduce原理部分也可以用类似方式说明数据分片计算,比如reduce阶段的数据分发公式$\text{reduce}_k=\bigcup_{m}\text{map}_m(k)$,但宜过多以免分散注意力。需要特别提醒的是,根据引用3,Hive元数据存储在MySQL这类关系库,但数据本身在HDFS——这个架构特性决定了它的使用限制。很多初学者会在这里混淆,应该在“数据存储特点”部分强调。</think> 以下是一份全面且实用的Hive SQL学习指南,结合核心概念与高频实践场景,助你快速掌握: --- ### **一、Hive基础架构与特点** | **特点** | **说明** | |------------------|--------------------------------------------------------------------------| | **类SQL语法** | 支持标准SQL语法(如`SELECT`/`JOIN`/`GROUP BY`),学习成本低[^3] | | **存储与计算分离** | 数据存于HDFS,元数据存于MySQL等关系库[^3] | | **批处理导向** | 适用于PB级离线数据处理(实时计算需用Spark/Flink)[^3] | --- ### **二、核心语法精讲(附避坑指南)** #### 1. **数据查询** ```sql -- 基础查询(支持WHERE过滤) SELECT user_id, SUM(order_amount) FROM orders WHERE dt='20230615' -- 分区过滤加速查询 GROUP BY user_id HAVING SUM(order_amount) > 1000; -- 分组后过滤[^4] ``` #### 2. **子查询规范** ```sql -- ✅ 正确:使用IN代替= (Hive对等式子查询严格) SELECT * FROM users WHERE user_id IN ( SELECT user_id FROM vip_users ); -- ❌ 错误:直接使用= (报错) SELECT * FROM users WHERE user_id = (SELECT user_id FROM vip_users); [^2] ``` #### 3. **排序操作** ```sql -- 全局排序(Order By:需避免大表全排序) SELECT * FROM logs ORDER BY event_time DESC; -- 局部排序(Sort By:每个Reduce内排序) SELECT * FROM logs SORT BY event_time; ``` --- ### **三、高级特性实践** #### 1. **分区表优化** ```sql -- 建表时定义分区 CREATE TABLE logs ( ip STRING, url STRING ) PARTITIONED BY (dt STRING); -- 按日期分区 -- 查询时利用分区裁剪 SELECT * FROM logs WHERE dt BETWEEN '20230101' AND '20230107'; [^3] ``` #### 2. **动态分区写入** ```sql -- 开启动态分区 SET hive.exec.dynamic.partition=true; SET hive.exec.dynamic.partition.mode=nonstrict; INSERT INTO TABLE logs PARTITION(dt) SELECT ip, url, dt FROM raw_logs; -- 自动按dt分区 ``` #### 3. **复杂数据类型操作** ```sql -- Map类型处理 SELECT user_id, preferences['language'] AS lang -- 获取Map中的值 FROM user_profiles; -- Array类型展开 SELECT user_id, skill FROM employees LATERAL VIEW EXPLODE(skills_array) t AS skill; [^3] ``` --- ### **四、性能调优关键点** 1. **数据倾斜处理** - **场景**:GROUP BY时某key数据量过大 - **方案**: ```sql SET hive.groupby.skewindata=true; -- 启用倾斜优化 ``` 2. **MapReduce优化** ```sql -- 控制Reduce数量 SET mapred.reduce.tasks=20; ``` 3. **存储格式选择** - ORC/Parquet格式 > TextFile(压缩+式存储) --- ### **五、免费学习资源** 1. **官方文档**: [Apache Hive官方手册](https://hive.apache.org/) 2. **在线沙箱**: Hadoop生态试验场(需注册)提供完整Hive环境 3. **本地部署**: 使用Docker快速搭建Hive环境(教程见[^2]附录) > ⚠️ 注意:Hive执行引擎差异(Tez/Spark vs MR)可能导致语法细节同,需确认环境配置 --- **
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值