蒙特卡罗模拟在金融领域的应用
1. 泊松分布随机数生成
为了研究私有信息的影响,有人设计了基于每日买方发起交易数量和卖方发起交易数量的知情交易概率(PIN)衡量指标,其模型的基本假设是订单到达遵循泊松分布。以下是生成泊松分布随机数的代码:
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
x=sp.random.poisson(lam=1, size=100)
#plt.plot(x,'o')
a = 5. # shape
n = 1000
s = np.random.power(a, n)
count, bins, ignored = plt.hist(s, bins=30)
x = np.linspace(0, 1, 100)
y = a*x**(a-1.)
normed_y = n*np.diff(bins)[0]*y
plt.title("Poisson distribution")
plt.ylabel("y")
plt.xlabel("x")
plt.plot(x, normed_y)
plt.show()
2. 从给定股票中随机选择股票
基于前面的程序,我们可以轻松地从500只可用证券中选择20只股票。这对于研究随机选择的股票数量对投资组合波动性的影响很重要。以下是实现代码:
import scipy as sp
n_stocks_available=500
n_st
超级会员免费看
订阅专栏 解锁全文
3994

被折叠的 条评论
为什么被折叠?



