题目大意
给定 n,mn,mn,m,令
Ans=∑i=1n∑j=1mlcm(i,j),Ans≡x(mod109+7)Ans=\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j),Ans≡x\pmod {10^9+7}Ans=i=1∑nj=1∑mlcm(i,j),Ans≡x(mod109+7)
求最小的非负 xxx。
数据范围 1⩽n,m⩽10101\leqslant n,m\leqslant 10^{10}1⩽n,m⩽1010
题解
Ans=∑i=1n∑j=1mi×j(i,j)=∑d=1n∑i=1n∑j=1mi×jd[(i,j)=d]=∑d=1min(n,m)∑i=1⌊nd⌋∑j=1⌊md⌋d⋅i×d⋅jd[(i,j)=1]=∑d=1min(n,m)d∑i=1⌊nd⌋∑j=1⌊md⌋ij[(i,j)=1]\begin{aligned} Ans&=\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{i\times j}{(i,j)}\\ &=\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{i\times j}{d}[(i,j)=d]\\ &=\sum_{d=1}^{\min(n,m)}\sum_{i=1}^{\large\lfloor\frac nd\rfloor}\sum_{j=1}^{\large\lfloor\frac md\rfloor}\frac{d\cdot i\times d\cdot j}{d}[(i,j)=1]\\ &=\sum_{d=1}^{\min(n,m)}d\sum_{i=1}^{\large\lfloor\frac nd\rfloor}\sum_{j=1}^{\large\lfloor\frac md\rfloor}ij[(i,j)=1]\\ \end{aligned}Ans=i=1∑nj=1∑m(i,j)i×j=d=1∑ni=1∑nj=1∑mdi×j[(i,j)=d]=d=1∑min(n,m)i=1∑⌊dn⌋j=1∑⌊dm⌋dd⋅i×d⋅j[(i,j)=1]=d=1∑min(n,m)di=1∑⌊dn⌋j=1∑⌊dm⌋ij[(i,j)=1]
套莫比乌斯反演
Ans=∑d=1min(n,m)d×∑i=1⌊nd⌋∑j=1⌊md⌋ij∑k∣i,k∣jμ(k)=∑d=1min(n,m)d×∑k=1⌊nd⌋μ(k)∑k∣ii⩽⌊nd⌋i∑k∣jj⩽⌊md⌋j=∑d=1min(n,m)d×∑k=1⌊min(n,m)d⌋μ(k)(∑k∣ii⩽⌊nd⌋i)(∑k∣jj⩽⌊md⌋j)=∑d=1min(n,m)d×∑k=1⌊min(n,m)d⌋μ(k)(∑i=1⌊ndk⌋ik)(∑j=1⌊mdk⌋jk)=∑d=1min(n,m)d×∑k=1⌊min(n,m)d⌋k2μ(k)((1+⌊ndk⌋)⌊ndk⌋2)((1+⌊mdk⌋)⌊mdk⌋2)\begin{aligned}
Ans&=\sum_{d=1}^{\min(n,m)}d\times \sum_{i=1}^{\large\lfloor\frac nd\rfloor}\sum_{j=1}^{\large\lfloor\frac md\rfloor}ij\sum_{k|i,k|j}\mu(k)\\
&=\sum_{d=1}^{\min(n,m)}d\times \sum_{k=1}^{\large\lfloor\frac nd\rfloor}\mu(k)\sum_{k|i}^{i\leqslant {\large\lfloor\frac nd\rfloor}}i\sum_{k|j}^{j\leqslant {\large\lfloor\frac md\rfloor}}j\\
&=\sum_{d=1}^{\min(n,m)}d\times \sum_{k=1}^{\large\lfloor\frac {\min(n,m)}d\rfloor}\mu(k)\left(\sum_{k|i}^{i\leqslant {\large\lfloor\frac nd\rfloor}}i\right)\left(\sum_{k|j}^{j\leqslant {\large\lfloor\frac md\rfloor}}j\right)\\
&=\sum_{d=1}^{\min(n,m)}d\times \sum_{k=1}^{\large\lfloor\frac {\min(n,m)}d\rfloor}\mu(k)\left(\sum_{i=1}^{\large\lfloor\frac n{dk}\rfloor}ik\right)\left(\sum_{j=1}^{\large\lfloor\frac m{dk}\rfloor}jk\right)\\
&=\sum_{d=1}^{\min(n,m)}d\times \sum_{k=1}^{\large\lfloor\frac {\min(n,m)}d\rfloor}k^2\mu(k)\left(\frac{\left(1+\Big\lfloor\dfrac n{dk}\Big\rfloor\right)\Big\lfloor\dfrac n{dk}\Big\rfloor}2\right)\left(\frac{\left(1+\Big\lfloor\dfrac m{dk}\Big\rfloor\right)\Big\lfloor\dfrac m{dk}\Big\rfloor}2\right)\\
\end{aligned}Ans=d=1∑min(n,m)d×i=1∑⌊dn⌋j=1∑⌊dm⌋ijk∣i,k∣j∑μ(k)=d=1∑min(n,m)d×k=1∑⌊dn⌋μ(k)k∣i∑i⩽⌊dn⌋ik∣j∑j⩽⌊dm⌋j=d=1∑min(n,m)d×k=1∑⌊dmin(n,m)⌋μ(k)⎝⎜⎛k∣i∑i⩽⌊dn⌋i⎠⎟⎞⎝⎜⎛k∣j∑j⩽⌊dm⌋j⎠⎟⎞=d=1∑min(n,m)d×k=1∑⌊dmin(n,m)⌋μ(k)⎝⎜⎛i=1∑⌊dkn⌋ik⎠⎟⎞⎝⎜⎛j=1∑⌊dkm⌋jk⎠⎟⎞=d=1∑min(n,m)d×k=1∑⌊dmin(n,m)⌋k2μ(k)⎝⎛2(1+⌊dkn⌋)⌊dkn⌋⎠⎞⎝⎛2(1+⌊dkm⌋)⌊dkm⌋⎠⎞
即使用杜教筛筛出 k2μ(k)k^2\mu(k)k2μ(k),这样时间仍然是超过线性的,无法通过本题。
更换枚举项,枚举 T=kdT=kdT=kd,易得其上界为 nnn,并且 k∣Tk|Tk∣T,则有
Ans=∑T=1min(n,m)∑k∣TTk×k2×μ(k)×((1+⌊nT⌋)⌊nT⌋2)((1+⌊mT⌋)⌊mT⌋2)=∑T=1min(n,m)((1+⌊nT⌋)⌊nT⌋2)((1+⌊mT⌋)⌊mT⌋2)∑k∣Tk2×μ(k)×Tk\begin{aligned}
Ans&=\sum_{T=1}^{\min(n,m)}\sum_{k|T}\frac Tk\times k^2\times \mu(k)\times {\left(\frac{\left(1+\Big\lfloor\dfrac n{T}\Big\rfloor\right)\Big\lfloor\dfrac n{T}\Big\rfloor}2\right)}{\left(\frac{\left(1+\Big\lfloor\dfrac m{T}\Big\rfloor\right)\Big\lfloor\dfrac m{T}\Big\rfloor}2\right)}\\
&=\sum_{T=1}^{\min(n,m)}{\left(\frac{\left(1+\Big\lfloor\dfrac n{T}\Big\rfloor\right)\Big\lfloor\dfrac n{T}\Big\rfloor}2\right)}{\left(\frac{\left(1+\Big\lfloor\dfrac m{T}\Big\rfloor\right)\Big\lfloor\dfrac m{T}\Big\rfloor}2\right)}\sum_{k|T}k^2\times \mu(k)\times \frac Tk\\
\end{aligned}Ans=T=1∑min(n,m)k∣T∑kT×k2×μ(k)×⎝⎛2(1+⌊Tn⌋)⌊Tn⌋⎠⎞⎝⎛2(1+⌊Tm⌋)⌊Tm⌋⎠⎞=T=1∑min(n,m)⎝⎛2(1+⌊Tn⌋)⌊Tn⌋⎠⎞⎝⎛2(1+⌊Tm⌋)⌊Tm⌋⎠⎞k∣T∑k2×μ(k)×kT
这里最好不要化简后面的 ∑k∣Tk2×μ(k)×Tk\sum_{k|T}k^2\times \mu(k)\times \frac Tkk∣T∑k2×μ(k)×kT
最好直接把它转换为卷积
Ans=∑T=1min(n,m)((1+⌊nT⌋)⌊nT⌋2)((1+⌊mT⌋)⌊mT⌋2)((id2⋅μ)∗id)(T)\begin{aligned}
Ans&=\sum_{T=1}^{\min(n,m)}{\left(\frac{\left(1+\Big\lfloor\dfrac n{T}\Big\rfloor\right)\Big\lfloor\dfrac n{T}\Big\rfloor}2\right)}{\left(\frac{\left(1+\Big\lfloor\dfrac m{T}\Big\rfloor\right)\Big\lfloor\dfrac m{T}\Big\rfloor}2\right)}\Big((id^2\cdot\mu)*id\Big)(T)\\
\end{aligned}Ans=T=1∑min(n,m)⎝⎛2(1+⌊Tn⌋)⌊Tn⌋⎠⎞⎝⎛2(1+⌊Tm⌋)⌊Tm⌋⎠⎞((id2⋅μ)∗id)(T)
现在只需要求出函数 ((id2⋅μ)∗id)\Big((id^2\cdot \mu)*id\Big)((id2⋅μ)∗id) 的前缀和即可。因此考虑 g=idg=idg=id。
等等!
为什么要考虑 g=idg=idg=id?为了让后续的 乱猜 更方便?如果 g=idg=idg=id 能做到些什么的话,为什么里面那个 ididid 不能做到?
考虑到卷积有交换律,我们可以忽略后面那个 ∗id*id∗id 而直接考虑前面的 (id2⋅μ)(id^2\cdot \mu)(id2⋅μ),很容易发现,对于这个用点乘得到函数只需要取 g=id2g=id^2g=id2 即可。
(((id2⋅μ)∗id)∗id2)(n)=(((id2⋅μ)∗id2)∗id)(n)=∑d∣n((id2⋅μ)∗id2)(d)×nd=∑d∣n∑k∣dk2⋅μ(k)×d2k2×nd=n∑d∣nd∑k∣dμ(k)=n∑d∣nd[d=1]=n=id(n)\begin{aligned}
\bigg(\Big((id^2\cdot \mu)*id\Big)*id^2\bigg)(n)&=\bigg(\Big((id^2\cdot \mu)*id^2\Big)*id\bigg)(n)\\
&=\sum_{d|n}\Big((id^2\cdot \mu)*id^2\Big)(d)\times\frac nd\\
&=\sum_{d|n}\sum_{k|d}k^2\cdot \mu(k)\times\frac {d^2}{k^2}\times \frac nd\\
&=n\sum_{d|n}d\sum_{k|d}\mu(k)\\
&=n\sum_{d|n}d[d=1]\\
&=n\\
&=id(n)
\end{aligned}(((id2⋅μ)∗id)∗id2)(n)=(((id2⋅μ)∗id2)∗id)(n)=d∣n∑((id2⋅μ)∗id2)(d)×dn=d∣n∑k∣d∑k2⋅μ(k)×k2d2×dn=nd∣n∑dk∣d∑μ(k)=nd∣n∑d[d=1]=n=id(n)
的确是个让人省心的函数。
因而有 n=(((id2⋅μ)∗id)∗id2)(n)=∑d∣n((id2⋅μ)∗id)(d)×n2d2=∑d∣n,d≠n((id2⋅μ)∗id)(d)×n2d2+((id2⋅μ)∗id)(n)\begin{aligned}
n&=\bigg(\Big((id^2\cdot \mu)*id\Big)*id^2\bigg)(n)\\
&=\sum_{d|n}\Big((id^2\cdot \mu)*id\Big)(d)\times \frac{n^2}{d^2}\\
&=\sum_{d|n,d\not=n}\Big((id^2\cdot \mu)*id\Big)(d)\times \frac{n^2}{d^2}+\Big((id^2\cdot \mu)*id\Big)(n)\\
\end{aligned}n=(((id2⋅μ)∗id)∗id2)(n)=d∣n∑((id2⋅μ)∗id)(d)×d2n2=d∣n,d=n∑((id2⋅μ)∗id)(d)×d2n2+((id2⋅μ)∗id)(n)
移项,得
((id2⋅μ)∗id)(n)=n−∑d∣n,d≠n((id2⋅μ)∗id)(d)×n2d2\begin{aligned}
\Big((id^2\cdot \mu)*id\Big)(n)=n-\sum_{d|n,d\not=n}\Big((id^2\cdot \mu)*id\Big)(d)\times \frac{n^2}{d^2}
\end{aligned}((id2⋅μ)∗id)(n)=n−d∣n,d=n∑((id2⋅μ)∗id)(d)×d2n2
求和
Sum(id2⋅μ)∗id(n)=∑i=1n((id2⋅μ)∗id)(i)=∑i=1ni−∑i=1n∑d∣i,d≠i((id2⋅μ)∗id)(d)×i2d2=(1+n)n2−∑k=2n∑d=1⌊nk⌋((id2⋅μ)∗id)(d)×k2d2d2=(1+n)n2−∑k=2nk2×Sum(id2⋅μ)∗id(n)(⌊nk⌋)\begin{aligned}\text{Sum}_{(id^2\cdot \mu)*id}(n)&=\sum_{i=1}^n\Big((id^2\cdot \mu)*id\Big)(i)\\
&=\sum_{i=1}^ni-\sum_{i=1}^n\sum_{d|i,d\not=i}\Big((id^2\cdot \mu)*id\Big)(d)\times \frac{i^2}{d^2}\\
&=\frac{(1+n)n}2-\sum_{k=2}^n\sum_{d=1}^{\large\lfloor\frac nk\rfloor}\Big((id^2\cdot \mu)*id\Big)(d)\times\frac{k^2d^2}{d^2}\\
&=\frac{(1+n)n}2-\sum_{k=2}^nk^2\times \text{Sum}_{(id^2\cdot \mu)*id}(n)\left(\Big\lfloor\frac nk\Big\rfloor\right)
\end{aligned}
Sum(id2⋅μ)∗id(n)=i=1∑n((id2⋅μ)∗id)(i)=i=1∑ni−i=1∑nd∣i,d=i∑((id2⋅μ)∗id)(d)×d2i2=2(1+n)n−k=2∑nd=1∑⌊kn⌋((id2⋅μ)∗id)(d)×d2k2d2=2(1+n)n−k=2∑nk2×Sum(id2⋅μ)∗id(n)(⌊kn⌋)
递归除法分块处理即可,时间复杂度为 T(n)=Θ(n34)T(n)=\Theta(n^{\frac 34})T(n)=Θ(n43)
前面莫比乌斯反演的部分除法分块处理,总时间复杂度仍然为 T(n)=Θ(n34)T(n)=\Theta(n^{\frac 34})T(n)=Θ(n43)
如果我们能线性筛出前面 n23n^{\frac23}n32 部分的 (id2⋅μ)∗id(id^2\cdot\mu)*id(id2⋅μ)∗id 就大功告成了。
这需要计算其三条特点:
((id2⋅μ)∗id)(1)=1\Big((id^2\cdot\mu)*id\Big)(1)=1((id2⋅μ)∗id)(1)=1
((id2⋅μ)∗id)(p)=p⋅(1−p)\Big((id^2\cdot\mu)*id\Big)(p)=p\cdot(1-p)((id2⋅μ)∗id)(p)=p⋅(1−p)
((id2⋅μ)∗id)(pk)=pk⋅(1−p)\Big((id^2\cdot\mu)*id\Big)(p^k)=p^k\cdot(1-p)((id2⋅μ)∗id)(pk)=pk⋅(1−p)
证明:由于 p0=1,p1=pp^0=1,p^1=pp0=1,p1=p,因而我们只需要证明第三条性质成立即可。
((id2⋅μ)∗id)(pk)=∑d∣pk(id2⋅μ)(d)×id(pkd)=pk×∑d∣pkd⋅μ(d)=pk×∑t=0kpt⋅μ(pt)=pk×(p0⋅μ(p0)+p1⋅μ(p1)+∑t=2kpt⋅μ(pt))=pk×(1−p+∑t=2kpt×0)=pk⋅(1−p)\begin{aligned}\Big((id^2\cdot\mu)*id\Big)(p^k)&=
\sum_{d|p^k} (id^2\cdot\mu)(d)\times id\left(\frac{p^k}{d}\right)\\
&=p^k\times \sum_{d|p^k} d\cdot\mu(d)\\
&=p^k\times \sum_{t=0}^k p^t\cdot\mu(p^t)\\
&=p^k\times \left(p^0\cdot\mu(p^0)+p^1\cdot\mu(p^1)+\sum_{t=2}^kp^t\cdot\mu(p^t)\right)\\
&=p^k\times \left(1-p+\sum_{t=2}^kp^t\times0\right)\\
&=p^k\cdot\left(1-p\right)\\
\end{aligned}((id2⋅μ)∗id)(pk)=d∣pk∑(id2⋅μ)(d)×id(dpk)=pk×d∣pk∑d⋅μ(d)=pk×t=0∑kpt⋅μ(pt)=pk×(p0⋅μ(p0)+p1⋅μ(p1)+t=2∑kpt⋅μ(pt))=pk×(1−p+t=2∑kpt×0)=pk⋅(1−p)
至此,我们能够在 T(k)=Θ(1)T(k)=\Theta(1)T(k)=Θ(1) 的时间内求出上面三种位置的函数值,因此,我们可以线性筛了。
总时间复杂度进一步降低到 T(n)=Θ(T×n23)T(n)=\Theta(T\times n^{\frac 23})T(n)=Θ(T×n32)。
%https://blog.youkuaiyun.com/C20181220_xiang_m_y/article/details/84894901
#include<bits/stdc++.h>
using namespace std;
#define maxn 7841588
const long long mod=1e9+7;
const long long inv_2=500000004;
const long long inv_6=166666668;
long long low[maxn],f[maxn],pri[maxn],vis[maxn],s[maxn];
void sieve(long long n){
memset(vis,0,sizeof vis);
long long tot=0;
vis[1]=low[1]=f[1]=1;
for (long long i=2;i<=n;i++)
{
if(!vis[i]) low[i]=pri[++tot]=i,f[i]=(i-(i*i)%mod+mod)%mod;
for (long long j=1;j<=tot&&i*pri[j]<=n;j++)
{
vis[i*pri[j]]=1;
if (i%pri[j]==0)
{
low[i*pri[j]]=low[i]*pri[j];
if (low[i]==i)
f[i*pri[j]]=((((1-pri[j])*i+mod)%mod)*pri[j]+mod)%mod;
else
f[i*pri[j]]=(f[i/low[i]]*f[low[i]*pri[j]]+mod)%mod;
break;
}
low[i*pri[j]]=pri[j];
f[i*pri[j]]=(f[i]*f[pri[j]])%mod;
}
}
for(int i=1;i<=n;i++)
s[i]=(s[i-1]+f[i]+mod)%mod;
}
long long ft_1(long long a){
long long t=a%mod;
return ((((1+(t))*(t))%mod)*inv_2)%mod;
}
long long ft_2(long long a){
long long t=a%mod;
return (((t*(t+1)%mod)*(2*t+1)%mod)*inv_6)%mod;
}
map<long long,long long> Sf;
long long S(long long n){
if(n<=maxn-10) return s[n];
{ map<long long,long long>::iterator t=Sf.lower_bound(n);
if(t!=Sf.end()) return t->second; }
long long ans=ft_1(n);
for(long long l=2,r;l<=n;l=r+1){
r=n/(n/l);
ans-=S(n/l)*(ft_2(r)-ft_2(l-1))%mod;
ans=(ans+mod);
} return ans;
}
void main2(long long n,long long m){
long long ans=0;
long long len=min(n,m);
for(long long l=1,r;l<=len;l=r+1){
r=min(n/(n/l),m/(m/l));
if(r>n) r=n;
ans+=ft_1(n/l)*ft_1(m/l)%mod*(S(r)-S(l-1))%mod;
ans=(ans+mod)%mod;
} printf("%lld",ans);
}
int main(){
sieve(maxn-10);
long long n,m,ans=0;
scanf("%lld%lld",&n,&m);
for(long long i=1;i<=n;i++)
for(long long j=1;j<=m;j++){
ans+=i/__gcd(i,j)*j;
ans%=mod;
}
printf("%lld\n",ans);
main2(n,m);
return 0;
}
%https://www.cnblogs.com/zhoushuyu/p/8275530.html
%https://blog.youkuaiyun.com/sslz_fsy/article/details/87819016