tensorflow.placeholder()函数用法

tensorflow.placeholder(),placeholder是占位符的意思,在tensorflow中类似于函数参数,在执行的时候再赋具体的值。

参数含义:
dtype:数据类型。常用的是tf.float32,tf.float64等数值类型
shape:数据形状。默认是None,就是一维值,也可以是多维,比如[2,3], [None, 3]表示列是3,行不定
name:名称。

看一段源码:

@tf_export("placeholder")
def placeholder(dtype, shape=None, name=None):
  """Inserts a placeholder for a tensor that will be always fed.

  **Important**: This tensor will produce an error if evaluated. Its value must
  be fed using the `feed_dict` optional argument to `Session.run()`,
  `Tensor.eval()`, or `Operation.run()`.

  For example:

  ```python
  x = tf.placeholder(tf.float32, shape=(1024, 1024))
  y = tf.matmul(x, x)

  with tf.Session() as sess:
    print(sess.run(y))  # ERROR: will fail because x was not fed.

    rand_array = np.random.rand(1024, 1024)
    print(sess.run(y, feed_dict={x: rand_array}))  # Will succeed.
  ```

  @compatibility(eager)
  Placeholders are not compatible with eager execution.
  @end_compatibility

  Args:
    dtype: The type of elements in the tensor to be fed.
    shape: The shape of the tensor to be fed (optional). If the shape is not
      specified, you can feed a tensor of any shape.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` that may be used as a handle for feeding a value, but not
    evaluated directly.

  Raises:
    RuntimeError: if eager execution is enabled
  """
  if context.executing_eagerly():
    raise RuntimeError("tf.placeholder() is not compatible with "
                       "eager execution.")

  return gen_array_ops.placeholder(dtype=dtype, shape=shape, name=name)

参数dtype是必选的,其它都是可选的。

菜鸟一枚,发表博客的主要目的是为了记录tensorflow机器学习中的点滴,方便自己以后查阅,如果有错误的地方,还请大家多提宝贵意见。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值