力扣刷题记录(#单调栈 #动态规划)

You are given an array prices where prices[i] is the price of a given stock on the ith day.

You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.

Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.

Example 1:

Input: prices = [7,1,5,3,6,4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.

单调栈:

1、如果为空栈或入栈元素大于栈顶元素则入栈

2、如果入栈元素小于等于入栈元素,则弹出栈顶元素,直到栈顶元素小于入栈元素


class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int ans = 0;
        vector<int> St;
        prices.emplace_back(-1); \\ 哨兵👨‍✈️
        for (int i = 0; i < prices.size(); ++ i){
            while (!St.empty() && St.back() > prices[i]){ \\ 维护单调栈
                ans = std::max(ans, St.back() - St.front()); \\ 维护最大值
                St.pop_back();
            }
            St.emplace_back(prices[i]);
        }

        return ans;
    }
};

 

利用动态规划算法:
 

dp[i]=max(dp[i−1],prices[i]−minprice)

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        if (n == 0) return 0; // 边界条件
        int minprice = prices[0];
        vector<int> dp (n, 0);

        for (int i = 1; i < n; i++){
            minprice = min(minprice, prices[i]);
            dp[i] = max(dp[i - 1], prices[i] - minprice);
        }
        return dp[n - 1];
    }
};

我的代码:

class Solution {
public:
    int maxProfit(vector<int>& prices) 
    {
        int flag = 0;
        int Max = 0;
        for(int i = 1;i<prices.size();i++)
        {
            if(prices[i]<prices[i-1]&&prices[flag] > prices[i])
                    flag = i;  //找最小
            Max = max(Max,prices[i] - prices[flag]);        
        }
        return Max;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值