Sort —— 排序算法

本文深入讲解了各种排序算法,包括直接插入排序、希尔排序、选择排序、堆排序、冒泡排序、快速排序及归并排序等。每种算法都详细介绍了其实现方式、时间复杂度与稳定性,并附有代码实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sort  —— 排序算法

 

插入排序:直接插入排序、希尔排序

选择排序:选择排序、堆排序

交换排序:冒泡排序、快速排序

归并排序:归并排序

 

直接插入排序

直接插入排序的基本思想是:把n个待排序的元素看成为一个有序表和一个无序表。开始时有序表中只包含1个元素,无序表中包含有n-1个元素,排序过程中每次从无序表中取出第一个元素,将它插入到有序表中的适当位置,使之成为新的有序表,重复n-1次可完成排序过程。

代码实现:

void InsertSort(int *a, size_t n)
{
          for (int i = 0; i < n - 1 ; i++)
          {
                   int end = i;
                   int tmp = a[end + 1];
                   while (end >=0)
                   {
                             if (a[end] > tmp)
                             {
                                      a[end + 1] = a[end];
                                      --end;
                             }
                             else
                             {
                                      break;
                             }
                   }
                   a[end + 1] = tmp;
          }
}

直接插入排序的时间复杂度和稳定性

直接插入排序的时间复杂度是O(N2):假设被排序的数列中有N个数,遍历一趟时间复杂度是O(N),需遍历多少次呢?N-1次,因此,其时间复杂度是O(N2)。

直接插入排序是稳定的算法,它满足稳定算法的定义:假设在数列中存在a[i]=a[j],若在排序之前,a[i]在a[j]前面;并且排序之后,a[i]仍然在a[j]前面。则这个排序算法是稳定的!

 

希尔排序

希尔排序是以它的发明者Donald Shell名字命名的,希尔排序是插入排序的改进版,实现简单,对于中等规模数据的性能表现还不错。

首先它把较大的数据集合分割成若干个小组(逻辑上分组),然后对每一个小组分别进行插入排序,此时,插入排序所作用的数据量比较小(每一个小组),插入的效率比较高。

 

 

代码实现:

void ShellSort(int *a, size_t n)
{
          int gap = n;
          while (gap > 1)
          {
              gap = gap / 3 + 1;
               for (int i = 0; i < n - gap; i++)
              {
                   int end = i;
                   int tmp = a[end + gap];
                   while (end >= 0 && a[end] > tmp)
                   {
                          a[end + gap] = a[end];
                          end -= gap;
                   }
                   a[end + gap] = tmp;
              }
         }
}

希尔排序的时间复杂度和稳定性

希尔排序的复杂度和gap是相关的

希尔排序不是稳定的,虽然插入排序是稳定的,但是希尔排序在插入的时候是跳跃性插入的,有可能破坏稳定性.

 

选择排序

选择排序是一种简单直观的排序算法。其基本思想是:首先在未排序的数列中找到最小(or最大)元素,然后将其存放到数列的起始位置;

接着,再从剩余未排序的元素中继续寻找最小(or最大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕


代码实现:

void SelectSort(int *a, int n)
{
          int min, temp;
          for (int i = 0; i < n - 1; i++)
          {
                   min = i;
                   for (int j = i + 1; j < n; j++)
                   {
                             if (a[j] < a[min])
                             {
                                      min = j;
                             }
                   }
                   if (min != i)
                   {
                             temp = a[min];
                             a[min] = a[i];
                             a[i] = temp;
                   }
          }
}

选择排序的时间复杂度和稳定性

选择排序的时间复杂度是O(N2):假设被排序的数列中有N个数。遍历一趟的时间复杂度是O(N),需要遍历多少次呢?N-1次因此,选择排序的时间复杂度是O(N2)。

选择排序是稳定的算法,它满足稳定算法的定义:假设在数列中存在a[i]=a[j],若在排序之前,a[i]在a[j]前面;并且排序之后,a[i]仍然在a[j]前面。则这个排序算法是稳定的!

 

堆排序

堆排序就是利用堆进行排序的算法,它的基本思想是:将待排序的序列构造成一个大堆(或小堆)。此时,整个序列的最大值就是堆顶的根结点,将它移走(就是将其与堆数组的末尾元素交换,此时末尾元素就是最大值)。然后将剩余的n-1个序列重新构造成一个堆,这样就会得到n个元素中的最大值。如此反复进行,便能得一个有序的序列。


代码实现:

void AdjustDown(int* a, size_t n, int i)
{
          int parent = i;
          int child = parent * 2 + 1;
          while (child < n)
          {
                   if (child + 1 < n && a[child + 1] > a[child])
                   {
                             ++child;
                   }
                   if (a[child] > a[parent])
                   {
                             swap(a[parent] , a[child]);
                             parent = child;
                             child = parent * 2 + 1;
                   }
                   else
                   {
                             break;
                   }
          }
}


void HeapSort(int *a, size_t n)
{
          for (int i = (n - 2) / 2; i >= 0; i--)
          {
                   AdjustDown(a, n, i);
          }
          int end = n - 1;
          while (end)
          {
                   swap(a[0], a[end]);
                   AdjustDown(a, end, 0);
                   --end;
          }
}

堆排序的时间复杂度和稳定性

堆排序的运行时间主要消耗在初始构建堆和在重建堆时,在构建堆的过程中,因为我们是完全二叉树从最下层最右边的非叶子节点开始构建,将它与其孩子进行比较,判断是否有必要交换,对于非叶子节点来说,最多进行两次比较和互换工作,因此整个构建堆的时间复杂度为O(n)。

在开始排序时,重建堆的时间复杂度为O(nlogn),所以总体来说,堆排序的时间复杂度为O(logn).

 

冒泡排序

冒泡排序(Bubble Sort),又被称为气泡排序或泡沫排序。

它是一种较简单的排序算法。它会遍历若干次要排序的数列,每次遍历时,它都会从前往后依次的比较相邻两个数的大小;如果前者比后者大,则交换它们的位置。这样,一次遍历之后,最大的元素就在数列的末尾! 采用相同的方法再次遍历时,第二大的元素就被排列在最大元素之前。重复此操作,直到整个数列都有序为止!

代码实现:

void BubbleSort(int *a, size_t n)
{
          for (size_t i = 0; i < n; i++)
          {
                   int flag = 0;    //初始化标记为0
                   for (size_t j = 0; j < n - i - 1; j++) //将a[0. . . i]中的最大数放在末尾
                   {
                             if (a[j] > a[j + 1])
                             {
                                      //swap(a[j], a[j + 1]);//交换a[j]和a[j+1]
                                      int temp = a[j];
                                      a[j] = a[j + 1];
                                      a[j + 1] = temp;


                                      flag = 1; //若发生交换,则把标记置为1
                             }
                   }
                   if (flag == 0)  //若没发生交换,则说明数组已经有序
                   {
                         break;
                   }
          }
}

冒泡排序的时间复杂度和稳定性

冒泡排序的时间复杂度是O(N2)。假设被排序的数列中有N个数。遍历一趟的时间复杂度是O(N),需要遍历多少次呢?N-1次!因此,冒泡排序的时间复杂度是O(N2)。

冒泡排序是稳定的算法,它满足稳定算法的定义。

 

 

快速排序

快速排序使用分治法策略。它的基本思想是:选择一个基准数,通过一趟排序将要排序的数据分割成独立的两部分;其中一部分的所有数据都比另外一部分的所有数据都要小。然后,再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

快速排序流程如下:

  • 从数列中挑出一个基准值

  • 将所有比基准值小的摆放在基准前面,所有比基准值大的摆在基准的后面(相同的数可以到任一边);在这个分区退出之后,该基准就处于数列的中间位置。

  • 递归地把"基准值前面的子数列"和"基准值后面的子数列"进行排序。

 

三种方法:

  1. 左右指针法

  2. 挖坑法

  3. 前后指针法

//左右指针法
int partSort1(int * a, int begin, int end)
{
          int left = begin;
          int right = end;
          int key = a[right];
          while (begin < end)
          {
                   //begin找大
                   while (begin < end && a[begin] <= key)
                   {
                             ++begin;
                   }
                   //end找小
                   while (begin < end && a[end] >= key)
                   {
                             --end;
                   }
                   swap(a[begin], a[end]);
          }
          swap(a[begin], a[right]);
          return begin;
}

void QuickSort(int* a, int left, int right)
{
          if (left >= right)
                   return;

          int div = partSort1(a, left, right);
          QuickSort(a, left, div - 1);
          QuickSort(a, div + 1, right);
}

//挖坑法
int partSort2(int *a, int begin, int end)
{
          int key = a[end];
          while (begin < end)
          {
                   while (begin < end && a[begin] <= key)
                   {
                             ++begin;
                   }
                   a[end] = a[begin];
                   while (begin < end && a[end] >= key)
                   {
                             --end;
                   }
                   a[begin] = a[end];
          }
          a[begin] = key;
          return begin;
}

void QuickSort(int* a, int left, int right)
{
          if (left >= right)
                   return;
   
          int div = partSort2(a, left, right);
          QuickSort(a, left, div - 1);
          QuickSort(a, div + 1, right);
}

//前后指针法
int partSort3(int *a, int begin, int end)
{
          int key = a[end];
          int prev = begin - 1;
          int cur = begin;
          while (cur < end)
          {
                   if (a[cur] < key && ++prev != cur)
                   {
                             swap(a[prev], a[cur]);
                   }
                   ++cur;
          }
          swap(a[++prev], a[end]);
          return prev;
}

void QuickSort(int* a, int left, int right)
{
          if (left >= right)
                   return;
          int div = partSort3(a, left, right);
          QuickSort(a, left, div - 1);
          QuickSort(a, div + 1, right);
}

快排优化

  • 三数取中法

  • 尾递归

当插入的数小于等于常数时用直接插入排序,在这里我们一般设置为小于等于7。
三数取中法:

       排序速度的快慢取决于关键字key处在整个序列的位置,key太小或太大都会影响性能,改进方法就是三数取中法,取三个关键字先进行排序,将中间的数作为key,一般取左端、右端和中间三个数,也可以随机选取。

//三数取中法
#define MAX_LENGTH_INSERT_SORT 7

void _InsertSort(int *a, size_t n)
{
          for (size_t i = 0; i < n - 1; i++)
          {
                   int end = i;
                   int tmp = a[end + 1];
                   while (end >= 0)
                   {
                             if (a[end] > tmp)
                             {
                                      a[end + 1] = a[end];
                                      --end;
                             }
                             else
                             {
                                      break;
                             }
                   }
                   a[end + 1] = tmp;
          }
}


void InsertSort(int *a, int left, int right)
{
          _InsertSort(a + left, right - left + 1);
}

int partSort2(int *a, int begin, int end)
{
          int mid = begin + (end - begin) / 2;
          if (a[end] > a[begin])
          {
                   swap(a[begin], a[end]);
          }
          if (a[mid] > a[begin])
          {
                   swap(a[mid], a[begin]);
          }
          if (a[mid] > a[end])
          {
                   swap(a[mid], a[end]);
          }
          int key = a[end];
          while (begin < end)
          {
                   while (begin < end && a[begin] <= key)
                   {
                             ++begin;
                   }
                   a[end] = a[begin];
                   while (begin < end && a[end] >= key)
                   {
                             --end;
                   }
                   a[begin] = a[end];
          }
          a[begin] = key;
          return begin;
}

void QuickSort(int* a, int left, int right)
{
          if ((right - left) > MAX_LENGTH_INSERT_SORT)
          {
                   int div = partSort2(a, left, right);
                   QuickSort(a, left, div - 1);   
                   QuickSort(a, div + 1, right);
          }
          else    //当 right - left 小于等于常数时用直接插入排序
          {
                   InsertSort(a, left, right);
          }
}

尾递归:

      递归对性能是有一定影响的,partSort函数在其尾部有两次递归操作。如果带排序的序列划分极端的不平衡,递归深度将趋近于n,而不是平衡时的logn。栈的大小是很有限的,每次调用都会耗费一定的栈空间,函数的参数越多,每次递归耗费的空间也就越多,因此如果能减少递归,将会大大提高性能。

//尾递归
#define MAX_LENGTH_INSERT_SORT 7   //数组长度阈值
void _InsertSort(int *a, size_t n)
{
          for (size_t i = 0; i < n - 1; i++)
          {
                   int end = i;
                   int tmp = a[end + 1];
                   while (end >= 0)
                   {
                             if (a[end] > tmp)
                             {
                                      a[end + 1] = a[end];
                                      --end;
                             }
                             else
                             {
                                      break;
                             }
                   }
                   a[end + 1] = tmp;
          }
}


void InsertSort(int *a, int left, int right)
{
          _InsertSort(a + left, right - left + 1);
}


int partSort2(int *a, int begin, int end)
{
          int mid = begin + (end - begin) / 2;
          if (a[end] > a[begin])
          {
                   swap(a[begin], a[end]);
          }
          if (a[mid] > a[begin])
          {
                   swap(a[mid], a[begin]);
          }
          if (a[mid] > a[end])
          {
                   swap(a[mid], a[end]);
          }
          int key = a[end];
          while (begin < end)
          {
                   while (begin < end && a[begin] <= key)
                   {
                             ++begin;
                   }
                   a[end] = a[begin];
                   while (begin < end && a[end] >= key)
                   {
                             --end;
                   }
                   a[begin] = a[end];
          }
          a[begin] = key;
          return begin;
}

void QuickSort(int* a, int left, int right)
{
          if ((right - left) > MAX_LENGTH_INSERT_SORT)
          {
                   while (left < right)
                   {
                             int div = partSort2(a, left, right);
                             if (div - left < right - div)
                             {
                                      QuickSort(a, left, div - 1);
                                      left = div + 1;
                             }                  
                             else
                             {
                                      QuickSort(a, div + 1, right);
                                      right = div - 1;                      //尾递归
                             }
                   }
          }
          else  
          {
                   InsertSort(a, left, right);
          }
}

快速排序的时间复杂度和稳定性

快速排序的时间复杂度:快速排序的时间复杂度在最坏情况下是O(N2),平均的时间复杂度是O(N*lgN)。这句话很好理解:假设被排序的数列中有N个数。遍历一次的时间复杂度是O(N),需要遍历多少次呢?至少lg(N+1)次最多N

为什么最少是lg(N+1)次?快速排序是采用的分治法进行遍历的,我们将它看作一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的定义,它的深度至少是lg(N+1)。因此,快速排序的遍历次数最少是lg(N+1)次。

为什么最多是N次?还是将快速排序看作一棵二叉树,它的深度最大是N。因此,快速排序的遍历次数最多是N次。

快速排序的稳定性:快速排序是不稳定的算法,它不满足稳定算法的定义。

 

归并排序

归并排序就是利用归并的思想实现的排序方法。它的原理是假设初始序列有n个记录,则可以看成是n个有序的子序列,每个子序列的长度为1或2,然后两两归并,得到[n/2]个长度为2 或1的有序子序列,再两两归并,.......,如此重复,直至得到一个长度为n的有序序列为止。这种方法称为2路归并排序。

//归并排序  递归实现
void MergeSort(int *a, size_t n)
{
          int * tmp = new int[n];
          _MergeSort(a, 0, n - 1, tmp);
          delete[] tmp;
}

void _MergeSort(int *a, int left, int right, int *tmp)
{
          if (left >= right)
                   return;
          int mid = left + ((right - left) >> 1);
          //[left, mid]  [mid+1, right]
          //保证两段子区间有序,再归并
          _MergeSort(a, left, mid, tmp);
          _MergeSort(a, mid + 1, right, tmp);
          //归并
          int begin1 = left, end1 = mid;
          int begin2 = mid + 1, end2 = right;
          int index = left;
          while (begin1 <= end1 && begin2 <= end2)
          {
                   if (a[begin1] < a[begin2])
                   {
                             tmp[index++] = a[begin1++];
                   }
                   else
                   {
                             tmp[index++] = a[begin2++];
                   }
          }
          while (begin1 <= end1)
          {
                   tmp[index++] = a[begin1++];
          }
          while (begin2 <= end2)
          {
                   tmp[index++] = a[begin2++];
          }
          index = left;
          while (index <= right)
          {
                   a[index] = tmp[index];
                   ++index;
          }
}

归并排序的时间复杂度和稳定性

归并排序总的时间复杂度O(nlogn),这是归并排序算法中最好、最坏、平均的时间性能。

归并排序是一种比较占用内存,但却效率高且稳定的算法。






 

 

数据结构中的排序算法是指一种将一串数据按照特定顺序(通常是升序或降序)列的方法。常见的排序算法有多种,每种都有其特点和适用场景: 1. **冒泡排序**(Bubble Sort):简单直观,通过不断交换相邻元素使得较大值逐渐“浮”到数组顶部。效率较低,适用于小规模数据。 2. **选择排序**(Selection Sort):每次从未排序部分找出最小(大)元素,放到已排序部分的末尾。不稳定,对大规模数据效率不高。 3. **插入排序**(Insertion Sort):类似于打扑克牌,将每个元素逐个插入到已排序的部分的适当位置。效率随着数据有序程度提高而提升。 4. **快速排序**(Quick Sort):采用分治策略,选取一个基准元素,将序列分为两部分,一部分小于基准,另一部分大于基准,然后递归地对这两部分进行排序。平均性能好,是一种常用的高效排序法。 5. **归并排序**(Merge Sort):同样基于分治,将数组分成两个子数组,分别排序后再合。稳定,但需要额外的空间存储。 6. **排序**(Heap Sort):利用这种数据结构特性,构建最大或最小进行排序。原地操作,效率较高。 7. **计数排序**(Counting Sort):针对非负整数,统计每个元素出现次数,再根据次数重构有序序列。时间复杂度低至线性,但只能处理整数范围有限的情况。 8. **基数排序**(Radix Sort):按位数从最低位到最高位进行排序,适合数字类型的整数排序
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值