设计模式

设计模式

1.常用设计模式有哪些

比较常见就是单例模式,工厂模式等。

具体说下单例模式,单例模式主要作用是保证在Java程序中,一个类Class只有一个实例存在。比如spring默认就是单例和生成唯一序列的UUID的环境中使用

2.简单说下单例模式

单例模式主要作用是保证在Java程序中,一个类Class只有一个实例存在。适用于

1.需要生成唯一序列的环境,比如生成唯一序列

2.只需要一个线程池对象等。这样可以就保证一个在全局使用的类不被频繁地创建与销毁,节省系统资源。

3.单例模式的步骤

单例实现主要是通过以下两个步骤:

1.创建本类私有化静态final类对象

2.私有化构造方法

3.创建静态方法创建好的类对象返回出去

4.单例模式的几种模式

1.饿汉式(线程安全)

类加载时就初始化实例,避免了多线程同步问题

public class Singleton {  
    private static Singleton instance = new Singleton();  
    private Singleton (){}  
    public static Singleton getInstance() {  
    return instance;  
    }  
}

2.懒汉式(线程安全)

获取实例的getInstance()方法上加了同步锁。保证了多线程场景下的单例

public class Singleton {  
    private static Singleton instance;  
    private Singleton (){}  
    public static synchronized Singleton getInstance() {  
    if (instance == null) {  
        instance = new Singleton();  
    }  
    return instance;  
    }  
}

3.懒汉式(线程不安全)

第一次调用才初始化,实现了懒加载的特性。多线程场景下禁止使用,因为可能会产生多个对象,不再是单例

public class Singleton {  
    private static Singleton instance;  
    private Singleton (){}  
  
    public static Singleton getInstance() {  
    if (instance == null) {  
        instance = new Singleton();  
    }  
    return instance;  
    }  
}

5.单例模式的饿汉式和懒汉式的区别

1.线程安全方面:饿汉式天生就是线程安全的,可以直接用于多线程而不会出现问题,懒汉式本身是非线程安全的。

2.资源加载和性能方面:

饿汉式在类创建的同时就实例化一个静态对象出来,不管之后会不会使用这个单例,都会占据一定的内存,但是相应的,在第一次调用时速度也会更快,因为其资源已经初始化完成。

而懒汉式顾名思义,会延迟加载,在第一次使用该单例的时候才会实例化对象出来,第一次调用时要做初始化,如果要做的工作比较多,性能上会有些延迟,之后就和饿汉式一样了。

6.简单说下工厂模式

工厂模式分为简单工厂模式,工厂方法模式,抽象工厂模式

简单工厂模式是由一个具体的类去做工厂类,创建其他类的实例

工厂方法模式是有一个抽象的父类定义公共接口,子类负责生成具体的对象

抽象工厂模式提供一个创建一系列相关或相互依赖对象的接口,而无须指定他们具体的类。

【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档围绕“单机无穷大电力系统短路故障暂态稳定Simulink仿真”展开,提供了完整的仿真模型与说明文档,重点研究电力系统在发生短路故障后的暂态稳定性问题。通过Simulink搭建单机无穷大系统模型,模拟不同类型的短路故障(如三相短路),分析系统在故障期间及切除后的动态响应,包括发电机转子角度、转速、电压和功率等关键参数的变化,进而评估系统的暂态稳定能力。该仿真有助于理解电力系统稳定性机理,掌握暂态过程分析方法。; 适合人群:电气工程及相关专业的本科生、研究生,以及从事电力系统分析、运行与控制工作的科研人员和工程师。; 使用场景及目标:①学习电力系统暂态稳定的基本概念与分析方法;②掌握利用Simulink进行电力系统建模与仿真的技能;③研究短路故障对系统稳定性的影响及提高稳定性的措施(如故障清除时间优化);④辅助课程设计、毕业设计或科研项目中的系统仿真验证。; 阅读建议:建议结合电力系统稳定性理论知识进行学习,先理解仿真模型各模块的功能与参数设置,再运行仿真并仔细分析输出结果,尝试改变故障类型或系统参数以观察其对稳定性的影响,从而深化对暂态稳定问题的理解。
本研究聚焦于运用MATLAB平台,将支持向量机(SVM)应用于数据预测任务,并引入粒子群优化(PSO)算法对模型的关键参数进行自动调优。该研究属于机器学习领域的典型实践,其核心在于利用SVM构建分类模型,同时借助PSO的全局搜索能力,高效确定SVM的最优超参数配置,从而显著增强模型的整体预测效能。 支持向量机作为一种经典的监督学习方法,其基本原理是通过在高维特征空间中构造一个具有最大间隔的决策边界,以实现对样本数据的分类或回归分析。该算法擅长处理小规模样本集、非线性关系以及高维度特征识别问题,其有效性源于通过核函数将原始数据映射至更高维的空间,使得原本复杂的分类问题变得线性可分。 粒子群优化算法是一种模拟鸟群社会行为的群体智能优化技术。在该算法框架下,每个潜在解被视作一个“粒子”,粒子群在解空间中协同搜索,通过不断迭代更新自身速度与位置,并参考个体历史最优解和群体全局最优解的信息,逐步逼近问题的最优解。在本应用中,PSO被专门用于搜寻SVM中影响模型性能的两个关键参数——正则化参数C与核函数参数γ的最优组合。 项目所提供的实现代码涵盖了从数据加载、预处理(如标准化处理)、基础SVM模型构建到PSO优化流程的完整步骤。优化过程会针对不同的核函数(例如线性核、多项式核及径向基函数核等)进行参数寻优,并系统评估优化前后模型性能的差异。性能对比通常基于准确率、精确率、召回率及F1分数等多项分类指标展开,从而定量验证PSO算法在提升SVM模型分类能力方面的实际效果。 本研究通过一个具体的MATLAB实现案例,旨在演示如何将全局优化算法与机器学习模型相结合,以解决模型参数选择这一关键问题。通过此实践,研究者不仅能够深入理解SVM的工作原理,还能掌握利用智能优化技术提升模型泛化性能的有效方法,这对于机器学习在实际问题中的应用具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值