HDU 3836:Equivalent Sets【强连通】

本文介绍了一种通过证明集合间的子集关系来确定多个集合是否等价的算法,并提供了一个具体的AC代码实现。该算法首先定义了如何使用子集关系证明两个集合的等价性,然后针对N个集合,采用Tarjan算法进行强连通分量分析,最终求出证明所有集合等价所需的最小步骤数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Equivalent Sets

Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Others)
Total Submission(s): 3611    Accepted Submission(s): 1258


Problem Description
To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.
You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
Now you want to know the minimum steps needed to get the problem proved.
 

Input
The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.
Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
 

Output
For each case, output a single integer: the minimum steps needed.
 

Sample Input
4 0 3 2 1 2 1 3
 

Sample Output
4 2
Hint
Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.
 AC—code:
#include<cstdio>
#include<vector>
#include<stack>
#include<cstring>
#define min(a,b) a>b?b:a
#define INF 0x3f3f3f
#define MAXN 20005
#define MAXM 50005
using namespace std;
int low[MAXN],dfn[MAXN],eagenum,instack[MAXN],sccno[MAXN],scc_cnt,dfs_clock;
vector<int>scc[MAXN];
int head[MAXM];
stack<int>s;

struct Eage
{
	int from,to,next;
}eage[MAXM];
void add(int a,int b)
{
	eage[eagenum].from=a;
	eage[eagenum].to=b;
	eage[eagenum].next=head[a];
	head[a]=eagenum++;
}
void tarjan(int u)
{
	int v;
	dfn[u]=low[u]=++dfs_clock;
	s.push(u);
	instack[u]=1;
	for(int i=head[u];i!=-1;i=eage[i].next)
	{
		v=eage[i].to;
		if(!dfn[v])
		{
			tarjan(v);
			low[u]=min(low[u],low[v]);
		}
		else if(instack[v])
			low[u]=min(low[u],dfn[v]);
	}
	if(low[u]==dfn[u])
	{
		scc_cnt++;
		scc[scc_cnt].clear();
		while(1)
		{
			v=s.top();
			s.pop();
			instack[v]=0;
			sccno[v]=scc_cnt;
			scc[scc_cnt].push_back(v);
			if(u==v)
				break;
		}
	}
}

vector<int>G[MAXN];
int out[MAXN],in[MAXN];
void suodian()
{
	int i;
	for(i=1;i<=scc_cnt;i++)
	{
		G[i].clear();
		out[i]=in[i]=0;
	}
	for(i=0;i<eagenum;i++)
	{
		int u=sccno[eage[i].from];
		int v=sccno[eage[i].to];
		if(v!=u)
			G[u].push_back(v),out[u]++,in[v]++;
	}
}
int main()
{
	int t,n,m,a,b,i;
		while(~scanf("%d%d",&n,&m))
		{
			while(!s.empty())
				s.pop();
			eagenum=0;
			memset(head,-1,sizeof(head));
			while(m--)
			{
				scanf("%d%d",&a,&b);
				add(a,b);
			}
			memset(dfn,0,sizeof(dfn));
			memset(low,0,sizeof(low));
			memset(sccno,0,sizeof(sccno));
			memset(instack,0,sizeof(instack));
			dfs_clock=scc_cnt=0;
			for(i=1;i<=n;i++)
				if(!dfn[i])
					tarjan(i);
			if(scc_cnt==1)
			{
				printf("0\n");
				continue;
			}
			suodian();
			a=b=0;
			for(i=1;i<=scc_cnt;i++)
			{
				if(!out[i])
					a++;
				if(!in[i])
					b++;
			}
			int ans=a>b?a:b;
			printf("%d\n",ans);
		}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值