为什么激活函数是非线性的?
如果不用激励函数(相当于激励函数是f(x)=x),在这种情况下,每一层的输出都是上一层的线性函数,无论神经网络有多少层,输出都是输入的线性组合,这与一个隐藏层的效果相当(这种情况就是多层感知机MPL)。
但当我们需要进行深度神经网络训练(多个隐藏层)的时候,如果激活函数仍然使用线性的,多层的隐藏函数与一层的隐藏函数作用的相当的,就失去了深度神经网络的意义,所以引入非线性函数作为激活函数。
对比激活函数Sigmoid、ReLu,tanh
Sigmoid函数
Sigmoid函数是深度学习领域开始时使用频率最高的激活函数,它是便于求导的平滑函数,能够将输出值压缩到0-1范围之内。