“国货之光” 完美日记的微服务实践和优化思路

完美日记在双11期间创下销售佳绩,其技术团队分享了电商平台的架构优化经验,包括分布式事务、数据库压力缓解、缓存管理及微服务治理实践。

点击上方"IT牧场",选择"设为星标"技术干货每日送达!

如果你是一位程序媛,你一定知道完美日记。

如果你是一位程序员,你的那个她一定知道完美日记。

今年双11,完美日记仅用28分钟就超过了2018年双11全天的销售额,成为第一个登上天猫双11彩妆榜首的国货品牌。在这个遍地都是漂亮小姐姐、号称男人(特指程序员)天堂的公司里,拥有着一支什么样的基础架构技术团队,他们是如何在 4 个月内筹建、上线电商平台的呢?本文将为您分享他们在实践微服务过程遇到的难点和优化思路。

完美日记基础架构技术团队欢迎您的加入,移步文末,了解详情。

起步


自建商城在设计之初,业务部门就提出了两个要求:不崩 & 快速上线。

在立项之后,团队还没有完全配备好,一边从其他团队里调取人手,一边大力招聘,与此同时,我们的架构师也在搭建一套分布式商城开发框架,编写 Demo,让新加入的同学能快速上手。

暴露问题


问题一:分布式事务

为什么会使用分布式事务?

这个暂且可以归因于快速上线,因为生成订单会调用到商品服务扣减库存,使用了分布式事务解决了因为跨服务调用引起库存超卖的问题,带来的问题就是性能上的消耗。

问题二:数据库压力

在大促活动期间,有个实时统计是直接从业务库上直接查询统计的,运营部门的小姐姐在不断地刷新,导致该接口上的压力山大,而且没有使用缓存,连 SQL 查询条件的时间都是动态的,导致 DB 层的缓存也使用不上,每次请求都打到 DB 上。

开发和测试环境是使用自建的 MySQL,生产环境使用的是 PolarDB,从阿里云官网上看到:

  • 集群架构,计算与存储分离

  • 读写分离

我们主观地认为,只要我们使用了集群连接地址就会自动进行读写分离,但是实际上并没有,后来发现在方法上显式的指定只读事务就有请求走到只读节点上了。

@Transactional(readOnly = true)

# 优化思路:

1)从 SQL 洞察和慢 SQL 里找调用响应时间最长和频度最高的 SQL;

2)结合代码,能用缓存代替的直接处理掉,不用能缓存的优化查询,结合阿里云提供的优化分析工具,调整索引;

3)活动高峰时段,禁止分析统计类的查询执行,临时改代码已经来不及了,幸亏 AHAS(阿里云的一款限流降级产品) 的接口限流和 SQL 限流功能;

4)TP 和 AP 分离,避免分析类直接查询到业务库(这是一个比较漫长的过程)。

问题三:缓存压力

除了前面所提到的分布式事务之后,发现还有同事写了使用 Keys 模糊查询 Redis,直接导致 Redis 的 CPU 飙升严重,通过阿里云提供的 Redis 管理工具可以很方便地查看到有哪些慢查询。

另外一个低级错误,我们相信应该不是第一个,也不会是最后一个,本来要设置一个 Key 的过期时间,结果少写了个 Unit 参数,第三个就变更偏移量了。

redisTemplate.opsForValue().set(key, value, offset)

# 为什么我们花了10分钟左右才解决?

1)惯性思维,review 代码没发现出来;

2)在错误日志里发现 Redisson 锁失败时,怀疑是 Redis 写满了;

3)使用阿里云的工具去查大 Key 时发现了 Key 很大,但是直接在网页查看值的时候只看到保存了一个字符,问题就出在这里,因为 RDS 管控台里获取到的值看起来是正确的,大概又过了2分钟左右,我觉得不太对劲,然后登录上去用 redis-cli 查看,傻眼了,里面塞满了 0x00。

问题四:

商城上线当月有一个促销活动,因为瞬间进来的流量过大,小程序前端埋点事件上报的接口连接数爆了,商城实时数据统计调用了流量统计服务的接口,然而服务调用超时时间设置的是60s,导致过多请求积压,CPU 突然飙升得很厉害。

# 优化思路:

1)充分利用 Nginx 的并发处理能力,Lua 脚本提供了强大的处理能力,将 Java 处理请求改为使用 OpenResty 接收;

2)接收到请求之后做好基本的校验之后,使用 lua-resty-kafka 模块异步发送到 Kafka;

3)Kafka 落盘到 HDFS 后,由 Spark 离线计算日志数据;

4)后端接口独立部署,实时数据统计调用接口设置更短的超时时间;

经过以上改造之后,前端日志上报服务单机处理能力由原来的 1K 提升 40K,那种如丝般顺滑的体验实在是太好了。

迭代


从当时的情形来看,针对双11的活动做大动作调整代码优化基本上是来不及了,离活动还有不到两个星期的时间,即便改了,风险也很高。

1、压测

作为一个新上线的项目,数据量还比较小,使用云服务来搭建一套1比1的压测环境还是比较容易的,在这个时间节点上,我们需要模拟真实的场景摸清楚目前的系统能承受多大的压力,需要多少机器。

阿里云上有个 PTS 的压测工具,可以直接导入 Jmeter 脚本,使用起来很方便,接下来说说我们的使用步骤:

1)先是按过往一个月的用户行为日志里,找出用户的路径和每个行为的思考时间,做了一个大概的模型;

2)按照双十一活动的运营节奏,定义了两到三个场景;

3)使用 ECS 搭建 Jmeter 集群,内网对接口进行施压,目的是减少网络开销,让请求都能打到后端服务器上;

4)观察服务器的压力,调节应用内存分配,再通过 PolarDB 性能分析,找出有性能瓶颈的 SQL 尽可能地优化掉;

5)将 Jmeter 脚本导入到 PTS,关联上数据库和 ECS 机器的云监控,设置好思考时间等相关的参数后施压,可以动态秒级调整压力,生成的压测报告就是我们想要的结果,需要拿这个结果来进行下一步的限流控制。

2、限流

1)在接入 AHAS 过程中,由于微商城项目当前版本接入的是spring-cloud-alibaba-dependencies-0.9.0.RELEASE版本来使用阿里云的 OSS 与 SMS,在接入 AHAS 后,需要对依赖 Alibaba 版本的升级,涉及包括 Nacos 配置中心与服务发现的升级和包路径的命名变更修改;

2)在接入 AHAS 的 gateway 网关路由限流,采用的是 SDK 接入方式,AHAS 采用了符合 springboot-starter 特性的 SDK 开发,这样在我们微商城接入 gateway 时只需要在项目 POM 中加入 spring-cloud-gateway-starter-ahas-sentinel,在接入 gateway 的时候发现,网关路由限流采集上传的 API 出现了没有兼容 Restfull 风格 API 的问题,导致 URL 上出现参数时多个url没有合并一起的情况,阿里云 AHAS 支持团队立即发布 Fix 版本,提供新的 SentinelWebInterceptor 拦截器进行清洗 Restful 风格 API 处理;

3)在接入 AHAS 的应用模块限流,采用的也是 SDK 接入方式,在按官网文档进行接入的时候,发现我们微商城采用的是最新版本的 Mybatis Plus 版本,在接入 SQL 限流分析功能时发现出现ahas报错,在将此反馈到ahas钉钉团队支援群后,当时已经差不多凌晨一点了,ahas团队的及时响应以及第二天早上就发布了兼容 Mybatis Plus 版本的SQL 限流分析版本给到我们微商城,在我们接入新版本后,SQL 分析和限流功能也能正常使用了;

4)在使用 AHAS 接入的时候,发现 AHAS 除了接口的 API 限流功能外,还提供了CPU/Load 的限流,对服务器性能情况的监控和保护做了很好的护航,在微商城服务器压力过高时能够很好的保护服务器不被高并发压垮,保证了服务的高可用,同时在服务器压力大的时候,做到了实时 QPS 日志上传的隔离,避免上传抢占服务器资源,保证了服务器在接入 AHAS 后也能保持良好的性能。

未来


未来计划要做的事情:

1)按服务拆分 Redis;

2)数据库读写分离、分库分表、TP/AP 分离;

3)业务中台化:建立业务中台,打通商品中心、库存中心、用户中心和交易中心;

为了更好的应对源源不断的挑战,以下岗位持续招聘中:

  • Java开发工程师

  • 前端开发工程师

  • 测试工程师

有意请发送简历至邮箱:

Lynn.Guo@yatsenglobal.com

作者信息:

庄工:逸仙电商架构师&技术委员会负责人,负责完美日记商城基础架构和微服务体系建设。

关工:逸仙电商后端技术专家,现主要参与微商城后端框架集成方案、以及性能调优和微商城技术规范管理。

唐工:逸仙电商技术经理,曾先后就职于中国航信和唯品会,现主要负责前后端技术统筹等打杂工作。

干货分享

最近将个人学习笔记整理成册,使用PDF分享。关注我,回复如下代码,即可获得百度盘地址,无套路领取!

•001:《Java并发与高并发解决方案》学习笔记;•002:《深入JVM内核——原理、诊断与优化》学习笔记;•003:《Java面试宝典》•004:《Docker开源书》•005:《Kubernetes开源书》•006:《DDD速成(领域驱动设计速成)》•007:全部•008:加技术讨论群

近期热文

安装单机版Consul微服务治理实践:探寻业务的单点异常自愈能力支付宝的架构到底有多牛逼!还没看完我就跪了!配置热更新,不想重启,如何更新Bean的状态?如何模拟 5 万的并发用户一篇文章搞定:扫码登录实现原理


想知道更多?长按/扫码关注我吧↓↓↓>>>技术讨论群<<<喜欢就点个"在看"呗^_^

【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档围绕“单机无穷大电力系统短路故障暂态稳定Simulink仿真”展开,提供了完整的仿真模型与说明文档,重点研究电力系统在发生短路故障后的暂态稳定性问题。通过Simulink搭建单机无穷大系统模型,模拟不同类型的短路故障(如三相短路),分析系统在故障期间及切除后的动态响应,包括发电机转子角度、转速、电压功率等关键参数的变化,进而评估系统的暂态稳定能力。该仿真有助于理解电力系统稳定性机理,掌握暂态过程分析方法。; 适合人群:电气工程及相关专业的本科生、研究生,以及从事电力系统分析、运行与控制工作的科研人员工程师。; 使用场景及目标:①学习电力系统暂态稳定的基本概念与分析方法;②掌握利用Simulink进行电力系统建模与仿真的技能;③研究短路故障对系统稳定性的影响及提高稳定性的措施(如故障清除时间优化);④辅助课程设计、毕业设计或科研项目中的系统仿真验证。; 阅读建议:建议结合电力系统稳定性理论知识进行学习,先理解仿真模型各模块的功能与参数设置,再运行仿真并仔细分析输出结果,尝试改变故障类型或系统参数以观察其对稳定性的影响,从而深化对暂态稳定问题的理解。
本研究聚焦于运用MATLAB平台,将支持向量机(SVM)应用于数据预测任务,并引入粒子群优化(PSO)算法对模型的关键参数进行自动调优。该研究属于机器学习领域的典型实践,其核心在于利用SVM构建分类模型,同时借助PSO的全局搜索能力,高效确定SVM的最优超参数配置,从而显著增强模型的整体预测效能。 支持向量机作为一种经典的监督学习方法,其基本原理是通过在高维特征空间中构造一个具有最大间隔的决策边界,以实现对样本数据的分类或回归分析。该算法擅长处理小规模样本集、非线性关系以及高维度特征识别问题,其有效性源于通过核函数将原始数据映射至更高维的空间,使得原本复杂的分类问题变得线性可分。 粒子群优化算法是一种模拟鸟群社会行为的群体智能优化技术。在该算法框架下,每个潜在解被视作一个“粒子”,粒子群在解空间中协同搜索,通过不断迭代更新自身速度与位置,并参考个体历史最优解群体全局最优解的信息,逐步逼近问题的最优解。在本应用中,PSO被专门用于搜寻SVM中影响模型性能的两个关键参数——正则化参数C与核函数参数γ的最优组合。 项目所提供的实现代码涵盖了从数据加载、预处理(如标准化处理)、基础SVM模型构建到PSO优化流程的完整步骤。优化过程会针对不同的核函数(例如线性核、多项式核及径向基函数核等)进行参数寻优,并系统评估优化前后模型性能的差异。性能对比通常基于准确率、精确率、召回率及F1分数等多项分类指标展开,从而定量验证PSO算法在提升SVM模型分类能力方面的实际效果。 本研究通过一个具体的MATLAB实现案例,旨在演示如何将全局优化算法与机器学习模型相结合,以解决模型参数选择这一关键问题。通过此实践,研究者不仅能够深入理解SVM的工作原理,还能掌握利用智能优化技术提升模型泛化性能的有效方法,这对于机器学习在实际问题中的应用具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值